

Aalborg Universitet

Steam-stable silica-based membranes

Boffa, Vittorio

Published in: PPM 2013 Abstracts

Publication date: 2013

Document Version Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA): Boffa, V. (2013). Steam-stable silica-based membranes. In PPM 2013 Abstracts (pp. 223)

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 24, 2024

Designing steam-stable silica membranes

Vittorio Boffa

vb@bio.aau.dk

Upcoming technology platforms for green fuel production require the development of advanced molecular separation systems for recovering liquid biofuels, biomethane and hydrogen.

Gas separation

- H₂ purification
- CO₂ sequestration
- Biogas upgrading

Pervaporation

- Alcohol dehydration
- Separation of organic solvents

PPM 2013 05 September 2013 Silica membranes

Ultramicroporous silica membranes

Nano Lett. 2012, 12, 1081-1086

Sol-gel

PPM 2013 05 September 2013 Silica membranes

Hydrothermal treatment

HT1: steam exposure (PH2O = 0.56 bar) at 150 °C for 70 h;

HT2: steam exposure (PH2O = 0.56 bar) at 200 °C for 70 h.

V. Boffa et al. J. Membrane Sci. 319 (2008) 256-263

Nature of sol-gel derived silica membranes

High free energy:

- Reduced cross linking
- High surface area
- High pore volume
- Strained SI-O-Si bonds

Nature of sol-gel derived silica membranes

High free energy:

- Reduced cross linking
- High surface area
- High pore volume
- Strained SI-O-Si bonds

Fabrication of hydrothermally stable microporous membranes

Strategies:

Doping			Support		Deposition		H ₂	Ŧ
Modifier	Precursor	M/Si molar ratio	Geometry	Material	Method	Calcination T [°C]	H₂ Permeance ×10 ⁹ [mol Pa¹ m²s¹]	Hydrothermal stability
Reference silica membrane								
Pure silica		0	disk	α-Al ₂ O ₃ /γ-Al ₂ O ₃	Sol-gel	400-600	1700	
modified membranes								
Al ₂ O ₃	AI(O- <u>secBu</u>)₃	0.02-0.065	tube	α-Al ₂ O ₃ /γ-Al ₂ O ₃	CVD	600	100-160	+
TiO ₂	Ti(O- <u>iPr</u>)4	0.03-0.2	tube	α-Al ₂ O ₃ /γ-Al ₂ O ₃	CVD	500-700	200-700	+
ZrO ₂	Zr(O- <u>n</u> Bu)4	0.11-1	tube	α-Al ₂ O ₃ /γ-Al ₂ O ₃	Sol-gel	570	40-300	+
Nb ₂ O ₅	<u>Nb</u> (O- <u>nBu</u>)₅;	0.33	disk	α-Al ₂ O ₃ /γ-Al ₂ O ₃	Sol-gel	500	37	+
NiO/Ni	Ni(NO ₃) ₂ ·6H ₂ O	0.25-1	tube	α-Al ₂ O ₃ /SiO ₂ -ZrO ₂	Sol-gel	550-650	188	+
CoxOy	Co(NO ₃) ₂ ·6H ₂ O	0.25	tube	α-Al ₂ O ₃ /γ-Al ₂ O ₃	Sol-gel	600	6-10	+
С	НТАВ		disk	α-Al ₂ O ₃ /γ-Al ₂ O ₃	Sol-gel	500	48	+

V. Boffa, 2012, Fabrication of ultramicroporous silica membranes for pervaporation and gas-separation, in Molecules at Work (B. Pignataro ed.) Wiley-VCH, 177-205.

Synthesis of mesoporous MxOy-silica powders

Addition of CTAB as pore tailoring agent

Drying and calcination at 450 °C

Characterization

Hydrothermal treatment

In autoclave at 120 °C for 48 h

Drying

Characterization

- TiO₂ doping is suitable to stabilize silica membranes for applications, which require high membrane permeability.
- ZrO₂ and Nb₂O₅-doped silica layers can be used where membrane stability is more important than membrane permeability.

Our data indicate that Ti(IV), Zr(IV), and Nb(V) ions act as network formers: they increase T_g and steam-resistance of porous silica structure, by enhancing its network

connectivity.

Glass transition temperature [Tg]

This membrane is not a simple sieve,

it can separate molecules also on the basis of their chemical properties

V. Boffa et al. 2008, ChemSusChem, 1, 437.

Inorganic nanoporous membranes

1) Uhlhorn et al. 1992 "Synthesis of ceramic membranes", J. Meter. Sci. 27 (527).

1990

2000

2010

Doped materials Inorganic nanoporous membranes

- 1. J. Sekulic et al. 2002 Microporous silica and doped silica membrane for alcohol dehydration by pervaporation, Desalination 148 (19).
- 2. T. Van Gestel et. al. 2006 ZrO₂ and TiO₂ membranes for nanofiltration and pervaporation, J. Membrane Sci. 284 (128).
- 3. H. L. Castricum et al. 2008 Hybrid ceramic nanosieves: stabilizing nanopores with organic links, Chem. Comm. (1103).

Inorganic nanoporous membranes

Doped materials

V. Boffa et al. 2008 Microporous niobia-silica membrane with very low CO₂, ChemSusChem 1 (437).

Defect-free membranes

1980

1990

2000

2010

Conclusions

"Fabrication and application of inorganic membranes relies on the development of new functional and ultrastable materials"

Acknowledgements

Aalborg University

Prof. Yuanzheng Yue

Turin University

Dr. Giuliana Magnacca

Danish National Advanced Technology Foundation