

Aalborg Universitet

Characterization of microporous silica-based membranes by calorimetric analysis

Boffa, Vittorio; Yue, Yuanzheng

Published in:

6th Black Sea Conference on Analytical Chemistry - Book of Abstract

Publication date: 2013

Document Version Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

Boffa, V., & Yue, Y. (2013). Characterization of microporous silica-based membranes by calorimetric analysis. In M. Sökmen, N. Öztürk, H. Elvan Bayrak, Z. Bahadir, E. Demír, S. Bayrak, & M. Koc (Eds.), 6th Black Sea Conference on Analytical Chemistry - Book of Abstract Article OP-02 Karadeniz Technical University.

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 10, 2024

Characterization of silica membranes by calorimetric analysis

Vittorio Boffa

vb@bio.aau.dk

Aalborg University

Section of Chemistry

Upcoming technology platforms for green fuel production require the development of advanced molecular separation systems for recovering liquid biofuels, biomethane and hydrogen.

Gas separation

- H₂ purification
- CO₂ sequestration
- Biogas upgrading

Pervaporation

- Alcohol dehydration
- Separation of organic solvents

Ultramicroporous silica membranes

Sol-gel

Nitrogen sorption analysis on powder samples

- Detection of all accessible pores of a material, also those with a dead-end, which do not participate to the permeate transport in a membrane.
- Ultramicropores are so small that they cannot be accessed by nitrogen molecules.
- Membranes and powders can have different pore structure.

H. Castricum et al. (2007) J. Mater. Chem., 17, 1509–1517.

Theoretical

Si:Nb = 3

Measured

Si:Nb = 1.5

V. Boffa et al. ChemSusChem 2008, 1, 437 – 443

He-permporometry

V. Boffa et al. (2008) Hydrothermal stability of microporous silica and niobia-silica membrane, J. Membrane Sci., 319, 256-263.

6th BBCAC 10 September 2013 Silica membranes

Hydrothermal treatment

HT1: steam exposure (PH2O = 0.56 bar) at 150 °C for 70 h;

HT2: steam exposure (PH2O = 0.56 bar) at 200 °C for 70 h.

V. Boffa et al. *J. Membrane Sci.* 319 (2008) 256–263

Doping			Support		Deposition		H ₂	ì
Modifier	Precursor	M/Si molar ratio	Geometry	Material	Method	Calcination T [°C]	Ⅎ₂ Permeance ×10 ⁹ [mol Pa¹ m² s¹]	Hydrothermal stability
Reference silica membrane								
Pure silica		0	disk	α-Al ₂ O ₃ /γ-Al ₂ O ₃	Sol-gel	400-600	1700	
modified membranes								
Al ₂ O ₃	AI(O- <u>secBu</u>)₃	0.02-0.065	tube	α-Al ₂ O ₃ /γ-Al ₂ O ₃	CVD	600	100-160	+
TiO ₂	Ti(O- <u>iPr</u>)4	0.03-0.2	tube	α-Al ₂ O ₃ /γ-Al ₂ O ₃	CVD	500-700	200-700	+
ZrO ₂	Zr(O- <u>nBu</u>)₄	0.11-1	tube	α-Al ₂ O ₃ /γ-Al ₂ O ₃	Sol-gel	570	40-300	+
Nb ₂ O ₅	<u>Nb</u> (O- <u>nBu</u>)₅;	0.33	disk	α-Al ₂ O ₃ /γ-Al ₂ O ₃	Sol-gel	500	37	+
NiO/Ni	Ni(NO ₃) ₂ ·6H ₂ O	0.25-1	tube	α-Al ₂ O ₃ /SiO ₂ -ZrO ₂	Sol-gel	550-650	188	+
CoxOy	Co(NO ₃) ₂ ·6H ₂ O	0.25	tube	α-Al ₂ O ₃ /γ-Al ₂ O ₃	Sol-gel	600	6-10	+
С	НТАВ		disk	α-Al ₂ O ₃ /γ-Al ₂ O ₃	Sol-gel	500	48	+

Synthesis of mesoporous MxOy-silica powders

Addition of CTAB as pore tailoring agent

Drying and calcination at 450 °C

Characterization

Hydrothermal treatment

In autoclave at 120 °C for 48 h

Drying

Characterization

- TiO₂ doping is suitable to stabilize silica membranes for applications, which require high membrane permeability.
- ZrO₂ and Nb₂O₅-doped silica layers can be used where membrane stability is more important than membrane permeability.

Nature of sol-gel derived silica membranes

High free energy:

- Reduced cross linking
- High surface area
- High pore volume
- Strained SI-O-Si bonds

Our data indicate that Ti(IV), Zr(IV), and Nb(V) ions act as network formers: they increase T_g and steam-resistance of porous silica structure, by enhancing its network connectivity.

Glass transition temperature [Tg]

Calorimetric analysis is a powerful tool for investigating structure and stability of unsupported membranes, and hence for developing basic knowledge for the effective design of sol-gel derived membranes.

Acknowledgements

Aalborg University

Prof. Yuanzheng Yue

Turin University

Dr. Giuliana Magnacca

Danish National Advanced Technology Foundation