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Aesthetics and quality of numbers using the primety 
measure 

Kristoffer Jensen 
AD:MT, 
Aalborg University Esbjerg, 
Niels Bohrsvej 8, 
6700 Esbjerg, Denmark 
E-mail: krist@create.aau.dk 

Abstract: The Farey sequences can be used to create the Euler totient function, 
by identifying the fractions for number n that did not occur in all Farey 
sequences up to n – 1. This function creates, when divided by n – 1, what is 
here called the primety measure, which is a measure of how close to being a 
prime number n is. The quality of a number sequence can be determined using 
the primety, which is further generalised to real numbers through the use of real 
numbered Farey sequences. Ambiguous and interesting results are obtained in 
this process; for instance it seems that all integers approach full primety when 
investigated in the real domain. The corresponding numerical sequences are 
furthermore shown to have interesting artistic properties. In particular the 
fractal behaviour is interesting. To further investigate fractal ambiguity, 
common fractals are extended with random elements, which render softer or 
more varied shapes. 
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1 Introduction 

Mathematics is an art form for many. This is true for the shapes that are created through 
mathematics, such as the fractal shapes, but also for the theoretic development of 
mathematics. 

The quest for (large) prime numbers is one of the important problems in mathematics, 
with repercussions into fundamental mathematics as well as contemporary society, with 
the use of prime numbers in coding and security systems. With the unpredictability of 
prime numbers, only brute force methods are guaranteed to render a result as to whether a 
number is prime or not. Many mathematicians will find the mathematics involved in 
prime numbers beautiful, or even artistic in its own right. Byers (2007) states: 
“Mathematics, as I have been describing it, is an art form. The words ambiguity and 
metaphor are much more acceptable in the arts than they are in the sciences. But 
ambiguity and metaphor are the mechanisms through which that ultimate ambiguity, the 
one that divides the objective from the subjective, the natural world from the mind, is 
bridged”. 

In addition to art in mathematical problem solving, the numbers can represent art in 
itself. Certainly, the golden ratio, and the accompanying Fibonacci numbers are found in 
many art works (Posamentier and Lehmann, 2007). Another mathematic area of interest 
with artistic outcomes is fractals. In the musical domain, Larry Austin composed  
several music pieces based on natural fractal shapes (Dodge and Jerse, 1997), including 
Maroon Bells from 1976, based in part on a mountain range, and Canadian Coastlines 
from 1981, based on actual coastlines. 

This work proposes to investigate number sequences, random fractals and the Farey 
sequence, in particular in the case of real numbers, and show some interesting and 
aesthetic outcomes of these areas. The paper starts with an overview of the aesthetics of 
mathematics in Section 2 and proposes random element extension to classical fractals, 
then the primety measure calculated from the Euler totient function through the Farey 
sequence is presented in Section 3, alongside the extension to real numbers, and the 
fractal behaviour of the primety measure and the Farey sequence is presented in Section 4 
with examples. Finally a conclusion is given. 

2 Mathematics aesthetics 

Mathematics is closely related to aesthetics today by the underlying mathematics in many 
computer programmes used by artists. In addition to this, mathematicians also thought 
their field of particular importance. For instance Gauss is reported to have said [Burton, 
(2006), p.548], “Mathematics is the Queen of the sciences, and the theory of numbers is 
the Queen of mathematics”. Some of the aspects of mathematics that relates to art are the 
vocabulary of the field, the fractals, and some (if not all) of the particular problems 
occurring in mathematics. 
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2.1 Mathematic vocabulary 

Mathematics has a vocabulary that most often tries to associate the mathematic term to 
the naming of that term (Schwartzman, 1994). For instance, prime, can be related to the 
common understanding; of first class, as the prime numbers are believed to be belonging 
to the first most basic category of numbers. Other number theoretic terms related to the 
prime numbers include pseudoprime (non-prime number that divides (2n – 2). See also 
Mersenne prime (prime of the form 2p – l, where p is a prime), semiprime (numbers 
having two divisors in addition to one and the number itself), coprime (two numbers 
having no common divisor), lucky (numbers obtained by an elimination method related  
to prime numbers, primorial (product of prime p and all smaller primes), star prime  
(prime number where the number of digits is also a prime), superprime (a prime that can 
be represented as the sum of two superpowers, nn), totient (the number of smaller relative 
primes), twin primes (primes that are neighbours, with only an even number in between), 
square free (numbers that have no squares in its divisors), etc. In this naming of 
mathematic properties, not only understanding is sought for, also it seems the names also 
aim for better remembering of the properties, if not more. It is difficult sometimes to 
relate the name to the mathematical property. What is evil about a number that has an 
even number of bits in its binary form? What is odious about a number that has an odd 
number of bits in its binary form? (http://oeis.org/A000069). 

2.2 Fractal examples 

Fractals are objects that are self-similar (i.e., details looks like the whole). Fractals are 
divided into exact or statistic self-similar objects, full or partial fractals, natural and 
mathematic fractals, etc. A common natural fractal is the coastline that was used as an 
example by the ‘father’ of fractal geometry (Mandelbrot, 1967). Common examples of 
mathematic fractals are the Cantor set, the Koch curve, and the Mandelbrot set. Fractals 
have two possible definitions (Addison, 1997), both proposed by Mandelbrot, the first 
saying that the Hausdorff dimension strictly exceeds the topological dimensions, and the 
second saying that the fractal is a shape made of parts similar to the whole in some way. 
Often, fractals are created using some kind of feedback mechanism, in which the input of 
the next step is a function including the output of the current step. The iterative step is in 
the case of the Koch curve, 

[ ], (1 )z az a z a= − +  (1) 

where z = l is the starting condition, and a is a complex variable, typically, 
½a i= + √ 3 / 6.  In the case of the Mandelbrot set, 

2z z c= +  (2) 
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where z = 0 is the starting condition, and c is a complex variable that ensures /z/ < 2. In 
order to increase the scope of these functions, it is here proposed to add a random 
element to the iterations, so that, 

(1 ) ( )z r f zρ= +  (3) 

where r is the random weight, ρ is a unit random variable, and f(z) corresponds to the 
iterative function (1) or (2). The original two-dimensional Koch curve is shown in  
Figure 1, while the Koch curve with random element (r = .2) according to (3) is shown in 
Figure 2. It is clear that the random element removes some of the order of the Koch 
curve, while at the same time giving it more complexity. 

The original Mandelbrot set is shown in Figure 3 and the Mandelbrot set with a 
random element (with weight r = 0.2) added to the iterations is shown in Figure 4. Again, 
the random element changes the image, but this time, more by adding random dots to the 
shape. In this, the self-similar behaviour is lost, in the sense that the shape is not found in 
the detail. 

Figure 1 The two-dimensional Koch curve 

 

Figure 2 The Koch curve with random element added to the terative step 
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Figure 3 The original Mandelbrot set 

 

Figure 4 The Mandelbrot set with a random element in the terative loop 

 

Both for the Koch and the Mandelbrot set, the random element is a way of extending the 
possibilities of the fractals, adding eventually (for large r) an ambiguity to what shape 
and whether the shape has any order in it. Of course, the proposed method of adding 
randomness to the iterative process is one of many possible methods, each of which 
renders the randomness differently. 

2.3 Primes and real numbers 

A prime numbers is a number that has no divisors other than itself (and 1). The prime 
numbers are so named either because they are the prime, i.e., first class numbers, or 
because they cannot be arranged in a rectangle with both sides having length greater than 
one. Thus, all numbers are found in the first row (Schwartzman, 1994). 

The main problem in the study of prime numbers has been, since the time of Riemann 
until today, the Riemann hypothesis. The Riemann zeta function is 
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and the Riemann hypothesis is that the zeta function, properly rewritten, has all  
non-trivial zeros on the line real(s) = l/2. The function has to be rewritten so as to be 
valid for s < l, and the trivial zeros are found on the real line s = –2k. The zeta function is 
commonly plotted with the real part on the x-axis and the imaginary part on the y-axis. 
An example of this for numbers up to l00 can be seen in Figure 5(b). 

The interesting part of the zeta function is when this is equal to zero. This can be seen 
when both the real and the imaginary part is zero, or when the absolute value is zero, or 
when the two-dimensional curve obtained when plotting the real vs. the imaginary of the 
zeta function crosses the zero position. As can be seen in Figure 5(c), when going into 
details, some crossings pass close to zero, although not through it. This may be because 
the function does not cross zero here, or because of numerical and precision issues. 

Figure 5 Zeta function, (a) real and imaginary, (b) complex full and (c) detail 

 

(a) 

  

(b)     (c) 
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3 Primety development 

The prime numbers are among the most important numbers, according to the 
mathematical community, and many theorems are based on the Riemann hypothesis. In 
this section, the notion of prime number is further developed with the introduction of the 
primety measure, a measure of how much prime a number is. This is done using the 
Farey sequence. Calculated using the integers, the Farey sequence renders a number of 
new fractions that is equal to the Euler totient function, while if the Farey sequence is 
calculated using real numbers, a more ambiguous result is obtained. 

The Farey sequence (Sylvester, 1883) for a number n consists of [0/n, l/2, l/3, 2/3, …, 
l/n, …, n – l/n]. For n = 0, it is the empty set [], for n = l, it is [0], for n = 2, it is [0, 1/2], 
for n = 3 it is [0, l/3, l/2, 2/3], etc. If all unique elements up to n – l are retained, then for  
n = l, or 2 there is one new element and for n = 3 or 4 there are two new elements, etc. 
The number of new element is [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, ...] and it corresponds  
(Sylvester, 1883) to the Euler totient function φ(n). φ(n) has the property that  
φ(p) = (p – l) for p primes, and that φ(n) ≤ (n – l), equal only in the case of n prime. 

Therefore, 

( )( ) 1
nP n n

φ= −  (5) 

 is here set as the primety function, i.e., a numerical indication of how close to being 
prime a number is. The primety values are shown in Figure 6 for the numbers 1 to 100. 
The prime numbers, for which P(n) = l, are denoted with a ring. It is now possible to 
investigate specific number categories with respect to their primety value. For instance, 
the pseudoprimes all have different primety values, although always above 0.5 for 
numbers up to l06. As a comparison, the minimum primety value in that range is below 
0.2. The lucky numbers also have primety values above 0.5 in that range and, of course, 
also many primety values equal to one. As a comparison, the even numbers have primety 
values below 0.5 (except for low integers) and odd numbers have primety value above 
0.36. Other integer sequences, such as evil and odious, have any primety value. If the 
quality of an integer sequence is supposed to be linked to its primety value, then the mean 
of the primety values of this sequence would constitute a good measure. As such, of 
course, prime numbers has mean l, lucky numbers mean 0.92, the pseudoprimes 0.87, the 
odd numbers 0.8l, Fibonacci numbers 0.69, the odious numbers 0.62, and the evil 
numbers 0.60. Finally the even numbers have mean primety of 0.4l. The natural numbers 
have, as a comparison, mean primety of 0.61. Thus, most investigated sequences have 
higher than average quality, as measured by the mean of the primety of the sequence. 

Now, if we use real numbers in the construction of the Farey sequence, [0/r, l/r, …, 
r/r, …, 1/(r + δ), …, (r)/(r + δ),...], and then find all new unique rations for each 
incremental δ, it is possible to show that the primety function for real numbers, 

( )( ) 1
rP r r

φ= −  (6) 

where φ(r) is calculated as the new unique element in the Farey sequence for increasing 
real numbers (r). P(r) follows a simple rule, as is shown in Figure 7. 
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Figure 6 The primety for numbers 1 to 100 

 

Figure 7 The primety values for real numbers between 1 and 100 

 

Notes: The integer numbers are shown in the figure, and the primes are denoted with ‘o’. 
Equation (7) is shown, for low numbers (2 ≤ k ≤ 10), in dashed. 
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The real primety shares many properties with the integer primety, but has some 
remarkable differences too, in particular that the integer primety approaches 1 for all 
integers in the real case, but only for the primes in the integer case. Among the common 
properties is that the cumulative sum divided by the index of the primety approximates 
π2/6 (Sylvester, 1883) both for integer and for real primety values. 

Another common property is that the primety values are always found on one of the 
curves; 

,k
kc x=  (7) 

where k is an integer, and x > 0 is an arbitrary value. P(r) jumps between the different  
ck, as r is increasing, so it is not possible to predict P(r) from it. Nonetheless, this  
seems like a promising area of further research. For instance, equation (7) gives an 
absolute minimum for the value of P(r). The maximum value seems to be equal to  
one for all values of x, with the exceptions of r = 1. For r < 1, P(r) = 0. All integer  
values approaches full prime number primety value; P(r) → 1 as r → n–. It is not  
clear how this relates to the fact that many of these integer numbers have primety values 
less than 1. 

Figure 8 (a) Transformed real value primety function (b) with corresponding min and max index 
values 

 
(a)     (b) 
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This is investigated further by transforming P(r), so that the shape of it, according to 
equation (3) is visible. By identifying the values of P(r) that correspond to each ck, and 
then multiplying the found values by x, a constant function is obtained. The result is 
shown in Figure 8. It is clear that P(r’) ⋅ r’ where r’ corresponds to the values where  
P(r) = = ck, is a constant function equal to k. The min and max index values shown in the 
right plot of Figure 8 indicates that the minimum index is equal to k, and the maximum 
index is fluctuating slowly. 

The first index corresponds to P(r) → 1 as r → n. The last index fluctuates slowly, in 
a non-predictable way, it seems. The primety function for real numbers has the 
appearance of bringing new findings to the quest for the understanding of prime numbers, 
but more work is necessary in order to assert this further. Hopefully this will allow more 
inspiring and artistically ambiguous mathematic development and further the art of 
mathematics and mathematic art. Some initial investigations of the latter are made in the 
next section. 

Another approach is to investigate the behaviour of P(r) in the vicinity of integers. 
P(r) has been calculated for 0 ≤ r ≤ 10 and for different precisions of r. The five primety 
values before and after r = i, i = {1 .. 10}, are shown in Figure 9 for precision 0.1, 0.01, 
0.001 and 0.0001. 

Figure 9 Behaviour of P(r) in the vicinity of integer values for different precisions 
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Note: The columns denote the first ten integer numbers with increasingly narrower 
context going down the rows. 

All primety values in the vicinity of each integer from 1 to 10 expose the same behaviour, 
independent of precisions. This can be seen in each column in Figure 9. The precision is 
increasing downwards, which makes the same interval (±5) span less of the actual 
distance for higher precisions. Thus the higher rows expose more falling behaviour, as 
they travel further along the 1/x curve of (7). The real primety value is not necessarily 
approaching one for r = i, as can be seen in the figure, for 5, for instance, where the 
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maximum is found two steps after r = i. While the primety seems independent of the 
precision of the calculation of the real primety, how is it with the actual values of primety 
in the vicinity of integers? An analysis of P(r) for high precision at the vicinity of integers 
from 1 to 100 shows a simple rule; the primety is repeating every three-integer values. 
Thus, as can also be seen in Figure 9, means P(r) is similar when r is close to 1, 4, 7, ... or 
close to 2, 5, … or close to 3, 6, ... The next repeating is found for each 21 integer. It does 
not seem possible to estimate classical prime numbers from the behaviour of the real 
primety. 

4 Fractal behaviour 

This section will show some of the fractal behaviours of the primety function, and the 
related Farey sequence. First, we calculate the primety for all numbers up to a large 
number, and show the scatterplot, i.e., the following primety value as a function of the 
current value, as seen in Figure 10. 

Figure 10 Next primety values as function of current primety value for integers (black) and real 
numbers (grey) (see online version for colours) 

 

Notes: Context going from next primety (upper left corner) to nine values after  
(lower right corner). The first eight integer values are denoted with a ring, and the 
corresponding value of n. 
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Some initial conclusions can be made from Figure 10. First, except for  
very low numbers, all integer primety values are found above the half-circle – P(n) – 1)2 
+ (P(n + 1) – 1)2 = z. Furthermore, except for a few low numbers, all high primety  
values – P(n) > 0.5 gives P(n + 1) < 0.5 and vice-versa. There is a systematic shift from 
high to low values. Thus, all even numbered primety values are found below 0.5 and  
all odd numbered values are found above 0.5. Furthermore, a majority of P(n) are  
found at or close to small integer fractions. Inside, the hole visible above P(n) = 1/3,  
P(n + 1) = 2/3, a shape very similar to the full plot is visible. If it is a fractal shape, it is a 
very slow one, i.e., the fractals only show up in detail for high precision. Each scatterplot 
reveals interesting and informative aspects of the primety values. 

For the real numbered primety values, P(r), even though the scatterplots place the real 
primety values in the vicinity of the integer values, the situation is different, as it seems 
the scatterplot reveals lines; P(n + k) = (l/m) • P(n), where l and m are low integers. For 
instance, (for the next value scatterplot), for the line leading to the ‘2’, l = m = 1, for  
‘3’ l = 2, m = 3, for ‘4’, l = 3, m = 2, etc. 

Figure 11 (a) Difference of Farey sequence for three sizes, and (b) three different details of the 
large size 

 

(a) 

 

(b) 

Notes: The different sizes show how the Farey difference signal always retains the same 
shape, and the different details show how the outer shape is copied in the details. 
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More fractal behaviour is coming from the Farey sequences. The difference signal of the 
integer Farey sequence has a characteristic shape, which is independent on the size of the 
Farey sequence. Furthermore, this same shape is exactly replicated inside the larger shape 
(assuming n is large). These findings are shown in Figure 11 for three different sizes, n = 
100 (left), n = 1,000, and n = 10,000 (right). All three sizes have the same shape, albeit 
the small sequence (left) is coarser. The peaks of the differences are found on small 
integer ratios, (1/2, 1/3, 3/8, 2/5, 5/12, etc.). 

Figure 11 shows the fractal behaviour of the Farey difference signal, both for 
different sizes [Figure 11(a)], and for different details [Figure 11(b)]. 

In addition to this, the real signal primety function P(r) exposes an interesting 
behaviour. In Figure 12, the real values primety function is shown for 0 < r < 10, along 
with the first to third difference signals [Figure 12(a)] and spectrograms [Figure 12(b)]. It 
is interesting to observe how the difference signals look similar to the primety signal 
itself, although with larger values for each difference, and also clearly changing shape at 
each integer value for higher difference signals. Treated as an audio signal, this function 
exposes a characteristic toned and rhythmic sound that eventually blends into a noisy 
signal. The sound is very similar across the primety difference signals. 

Figure 12 (a) Real value primety function and first three difference signals, and (b) spectrograms 

 
(a) 

 
(b) 

It is certain that nature contains vast amounts of at least statistic self-similarities fractals 
(Mandelbrot, 1967). Many artists have, consciously or not, integrated fractal shapes in 
their art. Among audio signals to potentially be used in music, as shown above, fractals 



   

 

   

   
 

   

   

 

   

   260 K. Jensen    
 

    
 
 

   

   
 

   

   

 

   

       
 

have a long tradition for quasi-artistic qualities. While the figures shown here are not 
necessary polished enough, or do not contain the aesthetic or other qualities to be used in 
artwork, it is still possibly to envision such a use. 

5 Conclusions 

This work has strived to increase the ambiguity of fractals and number sequences. Firstly, 
this is done by augmenting the classical fractals with random behaviour, thus rendering 
more complex or noisy shapes. 

The Farey sequence of real numbers, along with the introduction of the primety value 
permits exposing a certain number of laws that govern prime numbers. Among these are 
the fact that the primety values are always found on functions of the shape ck = k / x, 
which enables to assert a (low) lowest possible value of the primety function and thus of 
the Euler totient function. Furthermore, all even primety values are (asymptotically) 
lower than 0.5, and all odd values are higher than 0.36. The mean of the primety for a 
given number sequence can be used as a measure of the quality of the sequence. Thus, 
lucky numbers have high quality, while even number have low quality. 

Three interesting visual results from this research are; 

1 the k / x shape of the primety function 

2 the almost fractal scatterplot of the primety function, and the complete fractal shape 
of the Farey difference signal. 

Some interesting visual and sonic results are furthermore obtained from these signals. 
Fractals and related mathematic results, as presented here, are placed in a double art 

context, first, because the quest for the mathematic results leads to ambiguity,  
“one of art’s most potent aesthetic functions” (Byers, 2007), secondly, because the end 
result, graphics, plots, music, represents art in itself. 
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