Plastic deformation in glasses

Composition dependence and implications

Hermansen, Christian; Matsuoka, Jun; Yoshida, Satoshi; Yamazaki, Hiroki; Kato, Yoshinari; Yue, Yuanzheng

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Plastic deformation in glasses: Composition dependence and implications


1Section of Chemistry, Aalborg University, DK-9000 Aalborg, Denmark
2Center for Glass Science and Technology, The University of Shiga Prefecture, Japan
3Technical Division, Nippon Electric Glass Co., Ltd., Japan

Email address of corresponding author: chh@bio.aau.dk

Introduction

Although glass is considered an ideally brittle solid, permanent deformation will occur under gigapascal range shear as evidenced by microindentation studies. This work aims to quantify the two contributions to permanent deformation: Plastic deformation and densification.

Method

Step 1: The glass is indented, and plastic deformation and densification cause permanent deformation.

Step 2: The indent is mapped by AFM before and after annealing at 0.9 × T_g for 2 hours. The annealing fully recovers the densified volume.

Plastic deformation = Indent volume - Densified volume

Compositions

Silica content changed: 75SiO_2, 25Na_2O → 60SiO_2, 20Na_2O, 20CaO

Modifying ion changed: 75SiO_2, 15R, O 10RO
R = Na/K ; R' = Ca/Ba

Results

Plastic deformation

Densification

Silica fraction (mol)

Discussion

Plastic deformation

• Negligible effect of modifying ion
• Decreases linearly with silica mole fraction
• No plastic deformation above 80mol% silica

Interpretation:
Depolymerization beyond a critical value (80% silica) allows for plastic deformation.

Densification

• Decreases linearly with bulk modulus

Interpretation:
A densificative yield pressure.

Conclusion

For the first time strong quantitative relations of plastic deformation and densification to other properties of glasses have been found. This result is expected to lead to the development of glasses with improved scratch and fracture resistance.