Measuring Pain and Conditioned Pain Modulation after Ankle Sprain with a Spring Clamp
Rasmussen, Sten; Borrisholt, Ditte; Konggaard, Katrine

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
INTRODUCTION
It is estimated that one ankle sprain occurs for every 10,000 people/day in Denmark and constitute 7-10% of all admissions to hospital emergency departments.

OBJECTIVES
This study was conducted to determine whether pressure pain threshold (PPT) measurement of ankle sprain patients may be an instrument in understanding and analyzing pain, and if a spring-clamp would affect pain sensitivity and pain modulation after ankle sprain.

METHODS
- After ankle sprain 18 female and 14 male were included.
- Pressure pain thresholds (PPT) were measured on spina iliaca anterior superior, epicondylus medialis femoris and malleolus lateralis on the non-injured side of the body (PPT 1) with a handheld algometer.
- Sustained mechanical pressure was applied by a spring-clamp as a stimulus of conditioned pain modulation (CPM) after which PPT2 was measured.

RESULTS
- PPT 2 measurements were significantly lesser than PPT 1 measurements (p < 0.01).
- The variable 'man' increased PPT (p-value = 0.02) compared to female patients, the variable 'BMI' > 25 decreased PPT (p-value 0.08, borderline) compared to patients with BMI < 25, and the variable 'age' > 32 years increased PPT (p-value 0.1, borderline) compared to patients with age < 32 years.
- Ankle PPT were significantly greater than the knee PPT (p = 0.04108) and hip PPT (p = 0.006).
- Only the variable VAS had a borderline significance (p-value = 0.0631) when compared to the percentage difference in PPT ((PPT2-PPT1) / PPT1).
- The result of a simple linear regression analyses concludes in the equation that PPT = 2,004*VAS − 10,308.

CONCLUSIONS
According to the equation a VAS score < 5 will result in a negative outcome (PPT2 will be lesser than PPT1), which indicates that the patient is not exposed to sufficient intense pain to have an impact on pain modulation and activation of conditioned pain modulation (CPM). Thus in the current study most of the patients did not experience sufficient pain from the spring clamp to activate CPM.

A spring-clamp was not able to affect pain sensitivity or modulation after ankle sprains. This study supports how different variables may influence PPT and CPM.