

Aalborg Universitet

Software Innovation

Eight work-style heuristics for creative system developers

Rose, Jeremy

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Rose, J. (2010). Software Innovation: Eight work-style heuristics for creative system developers. Software
Innovation, Aalborg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: March 13, 2024

https://vbn.aau.dk/en/publications/744d8090-52c7-11df-aaa9-000ea68e967b

Software Innovation

Eight work-style heuristics for creative
system developers

Jeremy Rose

2

Beta version

First published 2010

By Software Innovation

Aalborg University

Department of Computer Science

Selma Lagerløfs Vej 300

Aalborg 9220

Denmark

Creative Commons License - Attribution-NonCommercial-
NoDerivs 2.5

You are free to copy, distribute, display, and perform the work
under the following conditions:

• ATTRIBUTION. You must attribute the work in the manner
specified by the author or licensor.

• NON-COMMERCIAL. You may not use this work for
commercial purposes.

• NO DERIVATIVE WORKS. You may not alter, transform, or
build upon this work.

For any reuse or distribution, you must make clear to others the
license terms of this work. Any of these conditions can be
waived if you get permission from the copyright holder. Your fair
use and other rights are in no way affected by the above.

Copyright (c) 2010 Jeremy Rose

Whole or partial use of the book should be attributed
(referenced) according to normal academic practice.

3

4

Preface
This short book was originally written as course notes for a part of
a new Software Innovation course at the Department of
Computer Science, Aalborg University in Denmark. The students
have primarily engineering backgrounds and a primarily
technical education. The book was intended to provide
counterpoint – that is to provide a scientific, but non-technical
account of an emerging systems development topic, written in a
non-normative style, where the intention is to further the students’
understanding of their own and other system developers’
practice in software innovation, rather than to provide them with
a recipe for it. Thus it is intended as a complementary text for
many system development courses, which will use as their main
text either a method book (in our department currently
Mathiassen et al’s ‘Object-oriented Analysis and Design’), or a
software engineering book (such as Pressman or Pfleeger).

The topic – software innovation – is important in several respects.
Software innovation re-focuses software development education
away from the instrumental, the rational, the automating and the
productive towards innovation – the focus that is least discussed,
and, arguably most important. The book will be interesting in
several contexts. Engineering schools may use it as something of
an antidote to their normal traditions, whereas business and
humanities schools will find an alternative perspective to their
method-oriented system development education. It is designed
to be understandable in all these contexts, with one foot in the
software engineering tradition and one in the information systems
tradition.

The book is intended for teaching rather than as a research
contribution, but as a result of its writing process it does also
function as an overview or summary of what is currently known
about software innovation from many disparate sources. This is
because it is researched and written as an extended literature
survey of a particular sample of research: those contributions
where the writers focus both on innovation and on software or
system development. Primary sources for chapters are given at
the end of the chapters and a complete list of sources is given at
the end of the book. There are, however many gaps in this
literature which I have been forced to fill.

5

Acknowledgement
To my good colleague Ivan Aaen, who contributed many of the
better ideas, and to the many talented students we work with.

6

Contents

Introduction 11
WHY STUDY SOFTWARE INNOVATION? 11

The global perspective 11
The competition perspective 12
The developer perspective 13

KNOWLEDGE SOURCES FOR SOFTWARE INNOVATION 13
SOFTWARE INNOVATION - THE SHAPE OF THE STUDY 15
EIGHT WORK-STYLE HEURISTICS 15
INNOVATION CONCEPTS AND SOFTWARE DEVELOPMENT 16

Three basic starting places: creativity, invention, innovation 16
Radical and incremental innovation 17
Product and process innovation 18
Installed base (infrastructure) 18
Innovation and software systems 19
Sources and further reading: 19

1. Keep your head up: software trajectories and innovation
windows 20

TECHNOLOGY AND ECONOMIC DEVELOPMENT 20
INSTALLED BASE, INFRASTRUCTURE 22
SOFTWARE TECHNOLOGY TRAJECTORIES 24
SOFTWARE TECHNOLOGY CONVERGENCE 26
THE SOFTWARE INNOVATION WINDOW 27
WORK-STYLE HEURISTIC 1 - KEEP YOUR HEAD UP 29

Sources and further reading: 30

2. Grow your community: network, knowledge, learning 31
VIRTUAL INNOVATION COMMUNITY: THE OPEN SOURCE MOVEMENT 34
OPEN INNOVATION 36
WORK-STYLE HEURISTIC 2 - GROW YOUR KNOWLEDGE COMMUNITY 39

Sources and further reading: 40

7

3. Target the product’s innovation profile: innovative software 41
CHARACTERISTICS OF INNOVATIVE SOFTWARE PRODUCTS 41
UTILITY - HIERARCHIES OF TECHNICAL SYSTEMS 44
NOVELTY: LEVELS OF INNOVATION 45
INCREMENTAL AND RADICAL INNOVATION 46
UTILITY FORMS 47

Innovation utility form 1: computing infrastructural 48
Innovation utility form 2: technology enabling 49
Innovation utility form 3: user service 50
Innovation utility form 4: business change enabling 50
Innovation utility form 5: interaction and communication 51
Innovation utility form 6: entertainment 52

WORK-STYLE HEURISTIC 3 - TARGET YOUR PRODUCT’S INNOVATION PROFILE 53
Sources and further reading: 55

4. Shape your own process: software process and innovation 56
SOFTWARE DEVELOPMENT METHOD – INNOVATION IS NOT A TYPICAL GOAL 56
LINEAR INNOVATION IN INDUSTRY 59
THE SOFTWARE INNOVATION LIFE CYCLE MODEL 61
ITERATIVE SOFTWARE INNOVATION PROCESS MODELS 61
DO AGILE METHODS PROMOTE INNOVATION? 63
MARKET-LED AND TECHNOLOGY-LED SOFTWARE INNOVATION 63
IMPROVISATION, BRICOLAGE 64
SIX INNOVATION PROCESS STRATEGIES 66

Innovation process strategy 1: creative requirements analysis67
Innovation process strategy 2: designed process framework 68
Innovation process strategy 3: low tech prototyping 69
Innovation process strategy 4: user-driven software
innovation 71
Innovation process strategy 5: community development and
the open source model 73
Innovation process strategy 6: research prototype 74

8

SOFTWARE PROCESS INNOVATION 75
The global picture 75
The local picture 77

WORK-STYLE HEURISTIC 4 - SHAPE YOUR OWN PROCESS 78
Sources and further reading: 79

5. Develop your personal creativity: the creative software
developer 81

CREATIVITY AS THE DEVELOPER’S MENTAL PROCESS 82
CREATIVITY AS A SET OF PERSONAL COMPETENCES 83
CREATIVITY AS A STYLE OF THINKING 86
CREATIVITY AS META-THINKING: RECOGNISING UNCONSCIOUS PRE-
DISPOSITIONS 87
CREATIVITY AS WHOLE-BRAIN THINKING: BEYOND RATIONALITY 88
CREATIVITY AS A STATE OF MIND 89
CREATIVITY AS A RELATIONSHIP BETWEEN THE DEVELOPER AND THE OUTSIDE
WORLD 91
CREATIVITY AS A UNIVERSAL MENTAL SKILL TO BE ENHANCED 92
WORK-STYLE HEURISTIC 5 - DEVELOP YOUR PERSONAL CREATIVITY 92

Sources and further reading 93

6. Be a super-team-worker: the innovative software team 94
CREATIVE/INNOVATIVE WORK ENVIRONMENTS: BARRIERS 95
GROUP DYSFUNCTION 98
INNOVATIVE TEAM ROLES: 99
INNOVATION TEAM INTERACTION 102
TEAM LEARNING AND INNOVATION 103
ACCOMMODATION OF DIVERGENT THINKING 106
EXPERTISE INTEGRATION 107
OVERVIEW: MACRO + MICRO INTEGRATION 107
INNOVATIVE TEAMWORK PATTERNS 108
ENVIRONMENTAL SCANNING 110
WORK-STYLE HEURISTIC 6 - BE A SUPER-TEAM-WORKER 111

9

Sources and further reading 112

7. Bring your toolbox: creativity tools and techniques 114
CREATIVITY TOOLS 114
CHARACTERISTICS OF APPLICATIONS SUPPORTING CREATIVITY 115
A SOFTWARE SUPPORT TOOLBOX 118
CREATIVITY TECHNIQUES 119
A STARTING REPERTOIRE OF CREATIVITY TECHNIQUES FOR SOFTWARE
DEVELOPMENT 124

Brainstorming 124
Backward mapping 125
SCAMPER 125
Six Serving Men 126
Six thinking hats 126
Vision box 127
Elevator test 128

WORK-STYLE HEURISTIC 7 – BRING YOUR TOOLBOX 128
Sources and further reading 129

8. Know when you are (not) innovative: assessment and
evaluation 130

PERSONAL CREATIVITY: PSYCHOMETRIC TESTING 130
INNOVATIVE SOFTWARE PRODUCT ASSESSMENT 131
WORK ENVIRONMENT ASSESSMENT 132
ASSESSMENT OVERVIEW 132
HERE-AND-NOW QUICK-AND-DIRTY EVALUATION INSTRUMENT 134

Keep your head up 134
Grow your knowledge community 135
Target your product’s innovation profile 135
Shape your own process 135
Develop your personal creativity 136
Be a super-team-worker 136
Bring your toolbox 136

10

Know when you are (not) innovative 137
WORK-STYLE HEURISTIC 8 – UNDERSTAND WHEN YOU ARE (NOT) INNOVATIVE137

Sources and further reading 137

9. Software innovation: eight work-style heuristics for innovative
system developers 139

SOFTWARE INNOVATION 139
EIGHT WORK-STYLE HEURISTICS FOR INNOVATIVE SYSTEM DEVELOPERS 143

Keep your head up 143
Grow your knowledge community 144
Target your product’s innovation profile 144
Shape your own process 144
Develop your personal creativity 145
Be a super-team-worker 145
Bring your toolbox 145
Know when you are (not) innovative 145

COMPREHENSIVE LIST OF READING AND SOURCES 147

11

Introduction
The theme of the book is software innovation - creativity and
innovation in the development, design and exploitation of
information systems (software). Software innovation is an
important topic, since it now underpins most of the significant
technological advances in modern societies, but surprisingly little
researched. Nor does it figure much in the education of system
designers and developers. This education is mainly focused on
instrumental and normative techniques - efficient programming
underpinned by method and engineering techniques. System
developers learn an engineering (or business or design) craft –
but sometimes forget the point of their endeavours. This is to
provide software and systems which change the practices of
their user communities – a core definition of innovation.

Why study software innovation?
Motivations for understanding and studying software innovation
are split into three perspectives:

• The global perspective

• The competition perspective

• The developer perspective

The global perspective
The making of software and development of information systems,
like all forms of human work, evolves to match the society it has
to serve. It would be more accurate to say that software
development evolves in a circular and dependent relationship
with society, since information systems are also an important part
of the society we live in. The world we live in is increasingly
globalised, which means that the connections between societies
and businesses in different parts of the world are becoming
stronger. This means that software and systems are increasingly
built to serve wide groups of users and organisations in many
countries. Programming languages are based on English, but are
essentially international which means that, in principle, software
can be made anywhere in the world. A further development,
consequent upon globalisation, is standardization. Microsoft
Word is a standardised software package used all over the
world; it is primarily the language of the interface which is
different. There are many such software packages, including

12

most forms of operating software, personal productivity and
business systems (such as enterprise resource planning systems)
which are standardized in this way. Of course there are many
cultural factors which make it impractical to build software in
remote locations, but increasingly software development can
be, and often is outsourced. This means it can be produced by
well-educated engineers in countries which have much lower
wage structures that in the developed countries. Economic
factors tend to dictate that software will be outsourced if a
similar result can be achieved more cheaply elsewhere. The last
trend which is noticeable in the evolution of software
development is industrialisation. Whereas software in the 60’s
was used by a small number of highly educated consumers, and
developed by a programming elite with skills that were possessed
by only a handful, it is now ubiquitous. Software is found
everywhere, in offices, homes, shops and cars. Most of us can’t
work without a computer, can’t communicate without a mobile
phone, and can’t run a home without a whole range of gadgets
run by embedded software. The large scale of software
development means that it is becoming mass-produced - made
for many by many, rather than by an elite. This trend means that
much software development is of a fairly routine nature and can
be made relatively quickly by engineers with solid technical
educations. This routine kind of development can often be
outsourced.

With these three factors (globalisation, standardisation, and
industrialisation) dominating the current evolution of software
development, software firms in highly developed countries,
employing expensive, but highly-educated engineers and
consultants) need to think carefully about their market position.
Now, and increasingly in the future, they will not be able to
compete in the market for everyday routine software, and must
focus on development forms with higher value addition. One of
these is software innovation.

The competition perspective
The shifting macro-trends mean that software firms in highly
developed countries must understand how to be innovative to
retain their competitive positions in the market. They need to be
able to attract the best engineers, to be flexible in the face of
rapid technology development, to understand modern
development methods, to incorporate changing software
technologies and to position themselves at the leading edges of

13

the markets they serve. Software innovation is one of the key
elements in competitive success in mature software markets.
Innovative software firms ride the crest of the technology wave.

The developer perspective
Highly competent, well-educated and experienced developers
and consultants need challenge to flourish. They do not thrive on
repetitive and routine work. They need to constantly develop
their skills, learn new techniques and technologies, to have both
creative freedom of expression, and space and time to express
that creativity. They need some control over their own
development processes, and to be given enough responsibility to
be experiment (and occasionally to fail) without drastic
consequences. In other words, they need to be software
innovators

Knowledge sources for software innovation
There is, unfortunately, no real science of software innovation, in
the form of a definitive textbook or a series of well-defined
research programs. However the study of innovation in general is
quite well developed, with contributions from several disciplines,
and the various disciplines that focus on software and
information system development also have some focus on
innovation. The knowledge represented in this book thus comes
from many interrelated sources.

• Economics provides us with understandings of how

innovation (and particularly technology innovation) drives

14

economic progress in society. The seminal figure here is
Joseph Schumpeter.

• Cognitive science and psychology contribute to our
understanding of creativity in the individual. For instance,
Csíkszentmihályi theorizes the characteristics of the
human mind when it is in a creative state.

• The sociology of science gives us a broader
understanding of how technology and society develop
hand in hand.

• Management science has developed understandings of
how to create and manage innovative firms and teams,
which are extremely relevant for software firms and
development teams.

These and many other contributions belong to the field of studies
called innovation. However system designers’ core disciplines
have also been concerned with innovation and creativity

• Computer science contains a long tradition of innovation,
and is the base discipline for software engineers; many of
the great software pioneers work in this or related fields.

• Software engineering particularly helps with process
innovation: here the evolution of agile development
styles plays an important role.

• Information systems is important for the understanding of
the application of software innovation – thus the
relationship between the eventual innovative software
product and its implementation context (community,
organisation, society), and the impact of software
innovation as social change.

When researchers and writers in these traditions address
innovation, they often use the concepts and theories developed
in innovation studies. Thus the science of software innovation
starts in many places, but the combination of these traditions
can be used to give a relatively secure basis for exploring the
subject.

15

Software innovation - the shape of the study

Software innovation in this book is understood as a development
process which leads to a software artefact – a program,
application, algorithm or to code. In principle, the process, the
product, or both can be innovative. Software is built by
developers working in teams, so it’s appropriate to study both
how individual developers are creative, and how teams function
in an innovative way. We should also be able to understand
where development is innovative, and where it is less so - in other
words to evaluate it. There are many creativity techniques that
might help the development process, and all development
activities can be underpinned with software tools, so these
should also be studied. Innovation studies also show that
innovation is strengthened by community – the network of
experts that the developers are in touch with. Finally, software is
not built in isolation, but in a social context, and the study of
infrastructure and of technology and market trends can be
important to the planning and timing of innovations.

Eight work-style heuristics
The book is not a technique or process guide, or a method or
blue-print for software innovation. Instead it suggests that
innovative system developers work in particular characteristic
ways. These work-styles can be expressed as rather broad
heuristics: that is, generalised precepts for attitudes to
development work. A heuristic, in this context, is a broad
guideline for behaviour or action which ‘will provide an
acceptable solution to a problem in many practical scenarios

16

but for which there is no formal proof of its correctness’
(Wikipedia). The eight heuristics are:

Keep your head up

Grow your knowledge community
Target your product’s innovation profile

Shape your own process
Develop your personal creativity

Be a super-team-worker
Bring your toolbox

Know when you are (not) innovative

They are discussed further in the following chapters.

Innovation concepts and software development
Now we will turn to some basic concepts in innovation studies
(which will help define a basic understanding of the topic) and
their relevance for software development. In each case the
terms are explained, not with a formal definition, but as they are
consistently used in the book.

Three basic starting places: creativity, invention, innovation
Three terms will appear again and again in this study. They are
related but also distinct.

• Creativity refers to the personal (or group) characteristics
which can lead to invention, often described as internal
abilities or states or relationships.

• Invention refers to the process or result of creativity - to an
idea or artifact which is novel, or the action of
developing it.

• Innovation describes the creative act and invention
carried into wider use, leading to substantial kinds of
change; thus the successful exploitation of new ideas.

17

Thus we should understand that innovation is more than creativity
and more than invention. Merely to design something that is new
is not innovation; in fact novel ideas are fairly commonplace and
often not the difficult part of innovation. The invention must be
developed and produced (normally commercially), distributed
and brought into use. The end result of innovation is social
change, a change of understanding or practice in a community
of people.

Thus innovation is sometimes described like a formula:

Innovation = Invention + Exploitation + Diffusion

where innovation is composed of the invention (new idea or
artefact) itself, its commercial development and exploitation,
and its adoption in a wider community of users. Thus the result of
successful innovation is experienced as change in the way
people work, the way business is carried out, people’s choice of
entertainment, their communication habits and interaction, the
governance of communities, and in many other aspects of social
life. Innovation is itself, as we shall later discover, social – usually
the work of many people, rather than a single idea generator.

Radical and incremental innovation
We can distinguish between two types of innovation: radical and
incremental. Radical innovation involves disruptive or
discontinuous change, a break with what has gone before and
an entirely new way of doing things. Radical innovation is rare
(the wheel, the steam engine, the computer, the internet). It is
sometimes associated with resistance as peoples ways of thinking
and working are changed fundamentally over short periods of
times. These changes can be painful, throwing groups of people
out of work, or changing the political balance of power.
Incremental innovation is much more common, consisting of
relatively small improvements to existing practices or ideas.
However not every incremental improvement can be described
as innovation, in order to be considered innovation, the
improvement must have a certain scale of impact. Incremental
innovation makes it meaningful to speak of innovation cycles –
iterating or sequential series of minor and major improvements
driving technological advance (for example, from early flying
machines to today’s airliners).

18

Product and process innovation
Another useful distinction is between product and process
innovation. An innovative product is an artefact (or a software
system) which displays characteristics of novelty and utility.
Novelty means the product has not been developed before,
whereas utility refers to its economic value (what consumers are
prepared to pay for it). Ford’s model T, the first really successful
automobile is an example. Process innovation, by contrast, is
innovation in the ways that artefacts are made, their
development method or engineering process. The model T
could not have been successful without the mass production
techniques (principally the automated production or assembly
line) used to build it. They enabled it to be produced in a certain
volume, and at a certain price that could make it widely
attractive.

Installed base (infrastructure)
Innovation is time and situation dependent, which means that a
change in one situation at one time is not necessarily innovative,
whereas the same development in another time or place might
be. Take as an example internet provision. In Scandinavian
countries almost everyone has access to the internet at the time
of writing, whereas in sub-Saharan Africa very few people do.
The introduction of the internet constituted a major social
change in the 90’s, revolutionising both work and leisure
practices. However, provision of the internet to the remaining
Scandinavian population at this point in time cannot really be
described as innovation, even though it might change these
peoples’ lives to some extent. Nor could the internet be
described as an innovation in Scandinavia in the 70’s. It existed
as an invention, but not one that was sufficiently exploited or
diffused to be described as an innovation. However, widespread
adoption of the internet in sub-Saharan today might be
experienced as innovation by Africans – they have little
experience of it and it might produce extensive changes. To
introduce another example: agile development methods are not
really new, but a development firms introducing them into
projects for the first time will definitely experience the change as
a process innovation. Therefore the idea of installed base is
borrowed from the study of infrastructure; we use it here to
describe the starting point for innovation – that is, the current
situation in terms of available software, or development process.
It follows that we can think of software innovation at different

19

levels – from the global societal level, to the local community
level where innovation is experienced as change by relatively
small groups of users or developers.

Innovation and software systems
All these basic innovation concepts can be applied without
difficulty to software systems. We will be interested in the
creativity of software developers and consultants, and the way
they work in creative teams. We will be interested in innovative
software systems (products) and how they can be commercially
developed and consequently widely diffused in society. We will
be interested in the effects that innovative software systems have
on their users and in communities at large. It will interest us to
study the radical innovations in computing and information
systems, but will be largely concerned with what can more often
be achieved - incremental innovation. We will be especially
interested in process – the ways that system developers work
innovatively, and the methods and techniques they use.

Sources and further reading:
COOPER, R. B. (2000) Information Technology Development
Creativity: A Case Study of Attempted Radical Change. MIS
Quarterly, 24, 245-276.

DENNING, P. J. (2004) The social life of innovation.
Communications of the ACM, 47, 15-19.

FAGERBERG, J. (2005) Innovation: a guide to the literature. IN
FAGERBERG, J., MOWERY, C. & NELSON, R. R. (Eds.) The Oxford
Handbook of Innovation Oxford, Oxford University Press.

ROBERTS, E. B. (1988) Managing invention and innovation.
Research Technology Management, 31, 11-27.

20

1. Keep your head up: software trajectories
and innovation windows

In this chapter we will look at software innovation in its context in
society. The theory is mainly derived from social and economic
studies of technology innovation, and adapted, as always, to the
software innovation context. However the focus will not be a
generalized understanding of the role of software innovation in a
society or an economy, but instead on the software innovator’s
application of these kinds of understandings. We have already
established that innovation is time-dependent and our subject of
interest will primarily be timing – when to innovate. The chapter
will develop the idea of a software innovation window – a space
of time in which the conditions for software innovation are
optimal. The proposition behind the chapter will be that these
conditions are at least partly analyzable – and it is thus possible
for the smart software innovator to be in the right place at the
right time. In order to make this kind of analysis we will have to
understand several different phenomena, including

• infrastructure (installed base) – the understanding that all
software innovation is dependent upon the condition of
the infrastructures that will support them, which can be
both technical and social

• software technology trajectory – the idea that software
technologies develop in particular historical directions
which can be understood, and to some extent predicted

• software technology convergence – a phenomena
where software technologies tend to come together and
be integrated in applications or devices

• software innovation windows – the time box where
innovation is possible, and where it is still possible to make
an impact in the market before it is dominated by other
innovators.

Technology and economic development
Technology innovation is a good indicator for economic growth.
Countries that are able to sustain high levels of technology
innovation (measured, for instance, in patents) also enjoy
economic prosperity. There is even some evidence that the

21

information technology and internet revolutions are widening the
gap between innovators and non-innovators -

‘affluent states at the cutting edge of technological change
have reinforced their lead in the new knowledge economy, but
so far the benefits of the internet have not trickled
down………productivity gains from information technology may
widen the chasm between the most affluent nations and those
that lack the skills, resources and infrastructures to invest in the
information society.’ NORRIS, P. (2001) Digital Divide, Cambridge,
Cambridge University Press.

Part of the reason for this relationship is that many societal
structures need to be in place to facilitate innovation of the
global variety. These can be described as infrastructure, or
installed base. In sub-Saharan Africa, where many villages do
not have reliable power supplies, there is little point in expecting
your users to adopt an internet-based computer game; however,
if you innovate in the field of solar panel power generation you
have a developing market.

The same picture that operates at the societal level can be
found at the level of companies. Those companies that are
technologically innovative, for example in their manufacturing
processes, or in adopting information technologies, will normally
have a competitive edge over non-innovators (though it should
be understood that, in both societal and industry arenas,
innovation is only one of many factors contributing to economic
success). Developed (rich) societies and leading edge
companies are more dependent on innovation, better
innovators, and earlier users of innovations. In this way they are
engaged in a continuing cycle of innovation, where the
economic benefits of innovation are invested in more innovation.
As innovations are absorbed into general use they become part
of the installed base upon which the next generation of
innovations can be made. Social structures such as research
and development departments and university research teams
also build upon past achievements in a cycle of success.

The other side of the innovation cycle coin is the tendency of
routine and well-established forms of technical work to move to
locations where labour is cheaper. If a technology is relatively
well-understood and the local infrastructures are good enough,
then non-innovative technology work can often be performed
more cheaply in less developed countries. Thus steel
manufacture moved away from the countries at the centre of

22

the original industrial revolution, and ship and car building has
larger re-located from the advanced western nations to the
emerging eastern nations. Software construction is currently
undergoing the same transition, where it is sufficiently mature and
well-understood (routine) for many parts of it to be outsourced or
relocated. India leads the emerging nations drive to capture this
market, and the areas around Calcutta and Bangalore have
become India’s Silicon Valley

Installed base, infrastructure
Central to the understanding of technology development in this
rather wide societal perspective is the idea of infrastructure. You
can think of infrastructure as yesterday’s innovation. Once a
railway, the petrol engine, an internet router, or a software
compiler was an innovation, but now it is part of your
community’s daily experience. It’s always available, it more or
less always works, you don’t really think about it unless it isn’t
working. When you have a power blackout then you will be
irritated if you can’t charge your phone, but you will never think
to be grateful for the vast majority of the time that you can
charge it without effort. Infrastructure is the unnoticed
precondition for technology innovation.

innovation (invention + exploitation + diffusion)

infrastructure – installed base

pre-condition for becomes

We can distinguish two forms of infrastructure, the physical and
the social. Our road system infrastructure is partly a physical
structure of tarmac, metal and plastic, partly a series of social
conventions about which side of the road we agree to drive on,
and what we do when the traffic light is red. Infrastructure is not
permanent, but under constant development and modification.

23

Installed base (infrastructure) is critical to software innovation. It’s
difficult to separate hardware and software development in any
rigorous way, but every PC application is dependent on a
complex set of hardware requirements to run. An up-to-date
commercial application is unlikely to run well (if at all) on a
computer that is five years old. The processor will be too slow,
there will be too little memory available, and various protocols
and operating systems will be missing. Web-based applications
depend on bandwidth available to large numbers of users that
would have been unthinkable ten years ago. The speed at
which software and hardware innovations in the computing and
information technology fields are adopted and diffused and
become part of the installed base is remarkable in relation to
previous types of innovation.

We’ll illustrate the relationship between installed base and
software innovation with a case study. Skype is an internet
based communication programme based on VOIP and peer-to-
peer technologies. It integrates a range of communication
support services, and exploits its technologies to provide a cost
benefit to its users compared to conventional landline and
mobile phone services. It became a considerable success, but is
entirely dependent on certain infrastructures being in place.
Firstly it is dependent on having sufficient bandwidth available to
internet uses to support a reasonable degree of sound quality in
voice exchanges. In the early days of the internet no one had
this, and it is only recently that broadband has been readily
available at a price consumers were prepared to pay, and only
in developed countries. Secondly it is dependent on coverage –
the numbers of users are connected. Without many connected
users (nodes) there is no-one
on-line to talk to. Only when a
critical mass is reached is it
likely that the people you
intend to communicate with
will also be online. Many
nodes are also necessary to
support efficient peer-to-peer
architectures. In addition a
variety of social infrastructures
need to be in place, not least
the degree of computer
literacy and widespread
acceptance of the internet

24

which makes it possible to switch from the conventional known
landline phone technology. It’s easy to see that Skype can
never be a success if these infrastructures are not in place. Few
people need a service which doesn’t connect you to anyone
you want to talk to, or doesn’t allow you to hear what is being
said.

Software technology trajectories
The second idea we will use to understand timing in software
innovation is that of trajectory. A trajectory describes the
direction in which something travels, and is used in the literature
on ‘social shaping’ of technology to describe the historical
development of technologies, and their relation to their social
circumstances. Thus we can examine the development of the
modern mp3 player from the early days of sound reproduction
technologies – wax cylinders, needles and acoustic horns,
through vinyl discs, valves (some music buffs still prefer them),
transistors, optical technologies and file compression (the mp3
format). In such an
analysis one could
trace the way
inventions in other
fields (plastics,
electronics, optics,
data transmission)
were adopted and
integrated into
sound
reproduction in a
chain of historical
events. One could
also study the evolution of listening habits as a social
phenomenon related to the technological developments.
Another phenomenon you should be aware of is digitalization:
the tendency of mechanical information technologies to
become first electronic then digital. In modern music
production, the whole of the composition, distribution and
listening process can be managed digitally. A song is composed
and produced in a sequencer program, using sampled sounds
and software instruments; the result is converted to an .mp3 file,
distributed via the web, downloaded to, and played on an mp3
player. There need be no mechanical analogue interventions.

25

This digitalization potential lies in any product which is
information-oriented.

Software technology trajectories can be analyzed in the same
way. In the next diagram, Wikipedia’s description of the
evolution of the operating system is analyzed as a tree of
trajectories, charting the development of operating systems from

the run time libraries of the 50’s, through the various machine-
dependent proprietary operating systems of the 70’s to
embedded, mainframe-oriented and PC systems of the present
day.

The really interesting question for software innovators has not,
however, been asked yet: it is whether these historical
descriptions of technology trajectories can be used to predict
the future? As in all predictive science, the question cannot be
answered with certainty, but it’s reasonable to expect that
software developers working in leading edge technologies have
a deep knowledge of the evolution of the technologies they
work with, are very well-oriented in respect to scientific
advancement in their field, and work in close contact with other
specialists and experts. This puts them in the position to
understand what is coming next before the general public can,
and to design their products accordingly. They may be fairly
certain about those developments they are currently working on,
or developments that are just around the corner, but much less
certain about what will happen further into the future. Many of
the fields move so fast that it’s hard to predict more than about

26

five years ahead. The further ahead one tries to look, the greater
the degree of prediction uncertainty. Moreover, radical
innovations, though rare, can alter the trajectory of a technology
quite markedly and quite rapidly. IBM predicted in the 80’s that
the future of computing (its trajectory) lay in the mainframe, and
sold the operating system that later became DOS to Bill Gates,
and outsourced its microprocessor technology to Intel. The
radical innovation of the microcomputer (or personal computer)
took the direction of the evolution of computing in an entirely
different direction, and cost IBM its leading position in the market.

If we return to the analysis of Skype, we can notice two
technology trajectories that are particularly important. The first is
the development of voice over internet (VoIP). The protocols
that enable voice transmission over broadband connections (as
an alternative to traditional copper wire telephony) became
increasingly sophisticated in the 90’s. Traditional telephony
companies began to implement internet solutions, major
software companies such as Cisco developed switching
software, internet service providers saw an opportunity to
broaden their service portfolios and customers became
interested in a potentially cheap (or free) telephony alternative.
The second is the rise of peer-to-peer (P2P) networks. Networks of
many nodes arose as an alternative to client server architectures
to enable file sharing. UseNet became popular for sharing news
articles, whereas Napster became a very widely known music
sharing service. BitTorrent is a modern equivalent. All these
services combine some P2P elements with a particular
perspective on the free sharing of information inherited from the
early internet founders. The Estonian developers of Skype (Sky
peer-to-peer) were able to understand the future potential of
these technologies and combine them in a novel way.

Software technology convergence
Further tendencies
that can be
observed with
technology
trajectories are
digitalization and
convergence.
These can be
illustrated by a

27

pocket handheld communication device such as an iPhone or
Blackberry. The device contains many different features and
functionalities beyond its basic mobile communication role. It is
potentially a contact database, a camera, a music player, a
radio, a calculator, a route finder, an internet browser, an alarm
clock, a file storage device, a game console. It has an operating
system and layers of software handling communications, GPS,
SMS, MMS and Bluetooth interfaces, and synchronization with the
owner’s PC. None of these software technologies are novel in
themselves (though they may require considerable programming
ingenuity to make) – they are adaptations of well understood
concepts. Most of the features have independent lives in other
devices. The designer’s job is to put together a package of
functionality which has utility for the potential owner. A new
technology is regularly added to the mix: camera, touch screen,
motion sensors – however these technologies are also found in
other devices. The technologies can thus be said to converge in
the new device.

Over a longer historical perspective, a further tendency can be
observed: the digitalization of mechanical technologies. Neither
an address book, a camera, a music player, a radio, a
calculator, a route finder, an alarm clock, nor a file storage
device are originally digital technologies – in earlier instantiations
they were paper address book, box camera, valve radio, map,
clockwork and filing cabinet. Over time, the information content
of the service is identified, digitalized and the software
technologies for manipulating it developed. Eventually the
mechanical technology dies out and is replaced by the more
convenient digital technology.

We can observe technology convergence and digitalisation in
the services that Skype offers: not just a phone substitute but an
address book, a contact search facility, an instant messaging
service, telephony conferencing, video conferencing, profiling,
gaming, synchronisation with outlook, fax, mobile skype, different
kinds of interfaces with conventional telephony.

The software innovation window

28

When we consider
the implications of
the various analyses
in this chapter, it
becomes obvious
that the timing of a
software innovation
is important. Too
early to market,
and the necessary
infrastructures will
be too poorly
developed to
support the

innovation – at least at a price that the consumers are prepared
to pay. Too late to market and the developer risks that the
innovation opportunity will be visible to many competitors, and
that there will be many competing products available. There is a
window of innovation opportunity. During the window, the
necessary technical and social infrastructures will become
available for the targeted user group. Technologies which will
drive the innovation may become mature in their trajectories. A
mechanical technology may be ripe for digitalization. A
particular mix of technologies may converge in the innovative
software product. Finally the potential user community will either
be expressing a demand for new digital services, or there will be
a particular stage of social development which will make it
possible to create such a demand.

In this final Skype analysis we can look at the social and technical
conditions (it´s innovation window) that enabled Skype to be
widely adopted and a commercial success. We have already
discussed the conditions of bandwidth and user adoption in the
infrastructural technology (the internet). We have noted the
technology trajectories of VoIP and P2P, which became
sufficiently mature to be combined in an innovative way. We
have also observed the convergence of a particular suite of
functionality which could offer utility to the user. In the social
environment we can see the intensification of communication,
as people become more used to affordable and mobile
telephony – in particular teenagers begin to develop previously
unknown telephony habits. Many people are online at work,
and sit in front of a computer for long stretches of time and the
internet is known as a source of free information – there is little

29

tradition of paying for internet services. At the same time the
emergence of online gaming means that many people are also
online in their leisure time. The use of SMS services grows
explosively, in connection with the rapid expansion of mobile
telephony, which also means that the national monopolies of the
traditional telephony providers break down, and a more varied
telephony pattern is established. Mobile telephony providers are
in a price war, increasing focus on the price of telephony, which
becomes an important focus in consumers’ choice. However,
increasing tariffs for broadcasting frequency licenses prevent
prices dropping so low as to make them insignificant.

These are some of the social and technical conditions which the
developers of Skype were able to recognise and exploit.

Work-style heuristic 1 - keep your head up
In this chapter we have examined the wider context of software
innovation - in particular trends in technology development in
society. We used Skype as an innovation case study to illustrate
the theoretical principles. The observations and analysis point in a
two particular directions:

1. software innovation is dependent on a lot more than
programming skill and development method – traditional
engineering skills

2. many of the situational factors in user communities and
societal technology trends can be understood and
analyzed.

The situational factors we have considered here are:

• technology trends and trajectories
• convergence and digitalization
• social and technical infrastructure development
• user (market) demand
• timing and innovation windows

It’s not the intention to portray software innovation as an exercise
in rational socio-technical analysis; nor do the ideas presented
here provide the necessary tools to do this. However it should be
clear that software innovation is dependent on extremely good
situation awareness which makes it necessary for developers to
have their heads out of their computer screens from time to time.
Another term for this is environmental scanning. This situational

30

awareness makes software innovation teams reliant on a variety
of complementary competences which are orthogonal to
programming competences. In this book, the shorthand for this
style of trend-alert software development is ‘heads-up’ software
innovation.

Sources and further reading:
HACKLIN, F., RAURICH, V. & MARXT, C. (2004) How incremental
innovation becomes disruptive: the case of technology
convergence. Engineering Management Conference. IEEE
International

HELO, P. (2003) Technology trajectories in mobile
telecommunications. International Journal of Mobile
Communications, 1, 233-246.

KOSKI, H. A. (1999) The Installed Base Effect: Some Empirical
Evidence From The Microcomputer Market. Economics of
Innovation and New Technology, 8, 273-310.

WALKER, G. H., STANTON, N. A. & YOUNG, M. S. (2001) Where is
computing driving cars? A technology trajectory of vehicle
design. International Journal of Human Computer Interaction, 13,
203-229.

31

2. Grow your community: network,
knowledge, learning

In innovation theory, innovation is understood as a social process.
Though we often picture a stereotypical lone genius scientist in a
white coat with flowing hair (Einstein always comes to mind),
scientific innovation is usually the work of teams or communities
of people working on the same problems. Their professional
knowledge and skills are developed, reproduced and enhanced
through the various interactions (social practice) of the
community. An innovation community can be described as the
conjunction of people, ideas and expertise involving both co-
operation and competition. Such a community can be physical
(face-to-face meeting) or virtual and is commonly a mixture of
both. A scientific conference is an example – establishing the
principal problems in the field, reviewing and developing the
participants’ work and establishing new co-operations.
Innovation communities are known in innovation theory as
networks, but we avoid the term her because of its many other
connotations in development work. An innovation system (a
term used by innovation theorists) can include government
policy makers, venture capitalists, non-governmental
organisations, scientists, activists and companies - each with a
distinct role to play in promoting innovation.

Many theorists have worked with the ideas of knowledge and
community. An innovation community can be thought of as an
invisible college - a term used by Diana Crane to describe the
mechanisms for idea cross-fertilization and diffusion of knowledge
in scientific communities. Ludvig Fleck used the term thought
community or thought collective to describe communities of
scientists producing and reproducing conceptualizations,
practices, and technologies. Each thought community has its
own thought style, which defines what can be meaningful
knowledge for the community in question. This conceptualisation
shares certain characteristics with Csiksentmihalyi’s use of the
field concept - the community who understand the domain
ideas and practices in which an innovation is received, and who
evaluate its value. Etienne Wenger and Jean Lave developed
the idea of community of practice to describe group of
professionals working on shared endeavours, and exhibiting
situated learning through practice and participation.
Professional knowledge is acquired by becoming a legitimate
peripheral participator in a community of practice, through

32

social interaction. Learning is thus dependent upon acceptance
in the community, and expertise, identity, and community
membership are inseparable. Network of practice is a concept
used to describe both the tight-coupled community, and the
many fellow professionals and colleagues with whom they have
much looser (less frequent and involved) connections.

The community and the knowledge it works with are intimately
connected:

“During the last decade there has been increasing interest in
understanding the social basis of technology and knowledge. It
has been argued that knowledge exists only in a social context,
and that this social context is created by social practices.
According to this view, knowledge is created and reproduced in
communities, and knowledge makes sense only in relation to
such communities. Furthermore, this view rejects the idea that
knowledge can be de-contextualized, or is something that can in
any trivial way be grounded on an “external reality.” Instead, this
view sees knowledge as a product of a social process.
Knowledge organizes social practices by institutionalizing ways of
interpreting the world. Knowledge is embedded in social
practices, conceptual systems, and material artifacts that are
used in social practices. Technology, social practice, and
knowledge complement each other and their evolution is part of
the same process.” (Tuomi, 2001, p 3-4)

Nonaka (1991) also understands knowledge as a social process,
in which meaning in constructed, tacit knowledge made explicit
and explicit knowledge internalized in a knowledge creation
space (ba). Nonaka distinguishes between explicit (codifiable)
and tacit (innate) knowledge which interact with each other in
the creative activities of human beings. This knowledge
conversion process is characterised as four activities:
socialization, externalization, combination and internalisation.

33

Socialization transfers tacit knowledge between individuals

through observation, imitation and practice. Externalization is
triggered by dialogue or collective reflection and relies on
analogy or metaphor to translate tacit knowledge into
documents and procedures. Combination reconfigures bodies
of explicit knowledge through sorting, adding, combining and
categorising processes and spreads it throughout an organisation
or professional community. Internalisation translates explicit
knowledge into individual tacit knowledge.

If knowledge is a social process, then the idea of a community of
knowledge builders also becomes important. A striking physical
example of an innovation community is encapsulated in the
concept of a science park. Here many scientists, engineers and
researchers are concentrated in a relatively small space.
Science parks (such as Zhongguancun in China) attract massive
investment and are often placed near to universities. Leading
technology companies, as well as entrepreneurial start-ups, find it
convenient to be there. There are many expensive facilities
(laboratories, equipment, powerful computers), and different
expertises which can provide solutions to product development
problems. They have economies which are based on research
funding, and (often) tax privileges and venture capital. They
have incubators for new companies and projects, and a large
well-educated employment pool, so that people can move
between jobs. Nearby, there are the cultural facilities and
housing opportunities which attract the creative classes;
talented people move to the area, stimulating both economic
and knowledge growth. In the software industry, many
companies cluster in California’s Silicon Valley to exploit these

34

benefits, and most technology-oriented countries have
corresponding areas.

Virtual innovation community: the open source
movement
Silicon Valley is a physical example of a software innovation
community, but our field has its own striking example of virtual
community in the open source model. According to the Open
Source Initiative (OSI), "open source promotes software reliability
and quality by supporting independent peer review and rapid
evolution of source code. To be OSI certified, the software must
be distributed under a license that guarantees the right to read,
redistribute, modify, and use the software freely." The well-known
open source projects (Free Software Foundation, Linux, Freenet,
Apache, Fetchmail) display many features common associated
with communities. They have their heroes and legends (Richard
Stallman, Linus Torvalds, Ian Clarke, Rob McCool, Eric Raymond).
They have a strong sense of reputation, and an established co-
operation principle. Knowledge is freely distributed in the form of
open code. Reputation in the community is important and there
are informal joining rituals and a relatively high entry threshold.
Interested programmers start with bug-reporting and fixing,
before they are encouraged to move on to more important
tasks. They have a distinct legal framework for their work: the
General Public License, also known as copyleft. They have their
own virtual community home - Sourceforge.net, with 50,000+
projects and 500,000+ registered users. The site itself is not simply
a code repository, but supports many social networking features,
such as profiling, discussion and reputation management.

35

open-source community principles

virtual net-
enabled
community

communities of programmers set the norms for
practice and provide a wider sense of contributing
and belonging - the community is often enabled
by the internet and the products of the community
are free and open to all its members.

the software
challenge

the focus of the community is the software it builds:
the software solution, characterised as a challenge
to be collectively overcome.

self-organisation in
networks

work is self-organised by independent and equal
peers in networks across traditional organisational
boundaries, rather than managed in the traditional
sense - networks merge, change and dissolve in
response to evolving technical challenges.

technical mastery programmers aspire to technical excellence –
mastery of their craft - where the ability to create
innovative or elegant programming solutions is the
primary measure of success.

self-realisation in
the technological
meritocracy

the community sets the scene for personal
expression, creativity, heroism and championing
innovation - membership of, and status in the
technological elite is the primary reward, not
commercial success.

code sharing,
peer feedback,
improvisation

improvement of the software solution takes place
through code sharing and code revision by other
programmers - the process is iterative and
improvisatory.

technology
leadership

programmer communities aspire to and attain
technology leadership through technical mastery
applied to the production of software solutions -
the techno-elite do not follow markets or
technology trends – they lead the markets and set
the trends through innovation.

code quality the engineering quality of the resultant code is the
measure of success.

programming
competence
development

programming competence development is the
motivating factor for improvement.

According to von Hippel and von Krogh (2003), the open source
movement is an example of an entirely new form of innovation -
the private collective model. They identify two existing

36

economic innovation models: the private investment model
(typical in industry) and the collective action model (typically the
university system).

 private investment collective action

• innovation supported by
private investors (typically
companies) who expect
private returns

• innovation
supported by the
state

• investors retain knowledge
through intellectual property
law, copyright, patent

• innovators relinquish
control of new
knowledge to a
common pool for
the common good

• knowledge/innovation loss to
society

• knowledge
disseminated
through society

The open source movement represents a new model because it
is private, but collective. Developer-users invest their own
resources, primarily in the form of programming time – however
the end result (the code) is freely accessible. Thus they invest
their private resources for the free revealing of knowledge
(code), which is benefit to anyone who chooses to use it.

Open innovation
Although we have primarily discussed the classical open source
project in the section above, there are many open innovation
models, and many of them are hybrid models in which private
companies and other closed source innovators are involved.
Chesbrough argues that, with open innovation, organisations
recognise that:

• not all the smart people work for us; we need to work with
smart people inside and outside our company

• external R&D can create significant value; internal R&D is
needed to claim some portion of that value

• we don’t have to originate the research to profit from it
• building a better business model is better than getting to

market first
• if we make the best use of internal and external ideas, we

will win, and

37

• we should profit from others’ use of our intellectual
properties, and we should buy others’ intellectual
properties whenever it advances our own business model.

Open innovation projects are not necessarily strategically
planned. The Danish company Lego were at first distressed to
find that a small community of hackers had built up around their
Mindstorms product and tried to stamp it out. Then they
observed two things: firstly that this created a great deal of bad
feeling and resentment amongst their most dedicated users, and
secondly that some of the code improvements that the hackers
contributed were better than the solutions provided by their own
developers. The solution: integrate the hackers into the product’s
beta-community and release parts of the code. The community
has since grown into a significant part of the product’s
development, with its own wiki-like web-site. In this way they
were able to activate the four principles of net-based mass
collaboration articulated by Tapscott and Williams:

• peering - voluntary collaboration between free agents
based on a de-centralised, non-hierarchical model

• sharing – knowledge sharing as the basis of collaboration
• openness – free access to ideas and code
• acting globally – (net-based) access for a wide user base

to promote the flow of idea and knowledge exchange.

IBM has a large open innovation commitment with contributions
to more than 120 open source projects, including Eclipse,
Apache Derby, Apache Geronimo, Apache Tuscany and
Apache Harmony, and more than $1 billion in Linux®
development. The company runs a partly open access portal as
the web support for its community, with downloads, learning
resources and community resources including forums and blogs.

“Among the key advantages of open source is that the
difficulties and costs of designing, developing, and improving
software can be distributed among many contributors. IBM may
be spending $100 million a year on development of Linux, but
firms such as Nokia, Intel, and Hitachi are making substantial
investments as well. Commercial investments in Linux are
estimated to exceed $1 billion a year. Sizeable though its
contribution is, IBM is sharing with others the effort and expense of
developing this core infrastructure............. IBM can take
advantage of ongoing open innovation done by others on Linux
and other GPL projects because the GPL requires disclosure of

38

source code of derivative programs of GPL software. By studying
others’ innovations, IBM engineers may perceive opportunities for
building new technologies on the open source base. Some
believe the open innovation model facilitates a faster pace of
innovation” (Samuelson 2006 p.24)

Gassmann and Enkel introduce three core types of open
innovation processes:

1. The outside-in process - external knowledge, technology
and intellectual property rights are acquired from the
outside and brought into the company.

2. The inside-out process - unused technology or IPR are
introduced to the market and exploited outside the
company.

3. The coupled process - the outside-in and inside-out
processes are coupled and the company works in
alliance with other companies. How the company
cooperates with others vary, and the locus of innovation
is often outside the company.

Open innovation has also been seen to advantage in the
emergence of standards, for instance with the Open Mobile
Alliance, which has been influential in the development of
standards for 3G mobile services such as device management,
messaging services, location and presence services, broadcast
services and digital rights management.

A further dimension of the open innovation movement is the
emergence of intermediaries (brokers) whose primary function is
to match innovation problem owners with solution providers.
InnoCentive, for example, allows potential innovators to search
catalogues of unsolved problems (‘challenges’ organised by
discipline and problem area (‘pavilion’) to locate innovations
where their skills and knowledge, patents and property rights can
be invaluable. The major ERP vendor SAP has their own pavilion
where they issue many challenges representing their current
innovation problems in the hope of attracting solutions that they
themselves cannot necessarily envisage or implement.

39

Work-style heuristic 2 - grow your knowledge
community
This chapter is intended to dispel the myth of the lone software
innovator, working from her garage. Software innovation is
understood as a community venture, because innovation is
coupled with learning and knowledge generation and these are
also community-based. Communities further the collective
advancement of knowledge through collaboration and co-
operation, but also through competition. Innovation
communities are sometimes internal to large companies such as
Google and Apple, who need to protect their knowledge
advances and product ideas for commercial reasons, but often
span developer companies, user companies, lead users, beta
user communities, research institutions and universities. The open
source movement is a specialised case in the software
development field, where it is particularly easy to see the
community elements at work; however there are many other
models of open innovation. It seems that most software
innovations happen in a social context; innovation has, in
Denning’s words, a ‘social life’.

If we should extract some lessons for young software innovators
and companies, then they should understand how to manage
and improve their social networks – the community links which
are important for their work and personal development. These
may be people they work with on projects, experienced software
managers and developers, teachers and mentors, researchers
they come in contact with at conferences, and many types of
users, groups and organisations who commission and work with
the systems they build. These groups help to define what a
promising software innovation is, to generate and test ideas, to
prototype and user test, and to exploit, market and diffuse both
the knowledge and the products that are the end result of the
creative process. They need to target those practice
communities who are important in their work, and earn admission
to them. Young developers need to understand the state of the
art, to team with colleagues with complementary skills and to test
their ideas with other experts in the field. In the same way, a
software innovation project is not always best served by
commercial secrecy. In many cases there are many
advantages to openness and collaboration, partnering and
expertise sharing. The software innovator is not a lone wolf – but
an expert networker.

40

Sources and further reading:
CHESBROUGH, H. (2003) Open Innovation: The New Imperative
for Creating and Profiting from Technology, Boston, MA, Harvard
Business School Publishing.

CSIKSZENTMIHALYI, M. (1997) Creativity: flow and the psychology
of discovery and invention, Harper Perennial.

DENNING, P. J. (2004) The social life of innovation.
Communications of the ACM, 47, 15-19.

FAGERBERG, J. (2005) Innovation: a guide to the literature. IN
FAGERBERG, J., MOWERY, C. & NELSON, R. R. (Eds.) The Oxford
Handbook of Innovation Oxford, Oxford University Press.

GASSMANN, O. & ENKEL, E. (2004) Towards a theory of open
innovation, three core process archetypes. R&D Management
Conference. Sesimbra.

NONAKA, I. (1991) The Knowledge-Creating Company. Harvard
Business Review, 69.

POWELL, W. & GRODAL, S. (2005) Networks of Innovators. IN
FAGERBERG, J. (Ed.) The Oxford Handbook of Innovation. New
York, Oxford.

SAMUELSON, P. (2006) IBM’s Pragmatic Embrace of Open Source.
Communications of the ACM, 49, 21-5.

TAPSCOTT, D. & A.D, W. (2006) Wikinomics: How Mass
Collaboration Changes Everything, New York, Portfolio
Hardcover.

TUOMI, I. (2001) Internet, Innovation, and Open Source: Actors in
the Network. First Monday, 6.

TUOMI, I. (2003) Networks of Innovation. Oxford Press.

VON HIPPEL, E. & VON KROGH, G. (2003) Open Source Software
and the “Private-Collective” Innovation Model: Issues for
Organization Science. Organization Science, 14, 209-223.

VON KROGH, G., SPAETH, S. & LAKHANI, K. R. (2003) Community,
joining, and specialization in open source software innovation: a
case study. Research Policy, 32, 1217-1241.

41

3. Target the product’s innovation profile:
innovative software

In this section we inspect the innovative software product. This,
like many of the terms used in this study is hard to define
precisely, but refers to the output of the systems developer –
primarily code. This may take the form of an application, an
operating system, a suite of communication protocols (such as
the OSI model), an algorithm, embedded software, mobile
software, or a variety of other expressions. In principle, all
computing artefacts that are not hardware are software
products, but in the case of embedded software, even this
distinction is hard to maintain. In many cases, hardware and
software are developed side by side (think of a mobile
telephone, for example), so that they are interdependent. We
have adapted the term ‘software product’ from the innovation
literature, though it sounds a little foreign to most developers, in
order to cover these many different instantiations. We look at the
characteristics of innovative software, and develop the idea of a
product’s ‘innovation profile’.

Characteristics of innovative software products
Innovative software products, according to innovation theory,
display the qualities of novelty and utility.

Global novelty is a characteristic of a software product which is a
significant advance on other products in its domain across the
board – i.e. never previously developed. However, software
product innovation is both time and user community dependent.
An innovation is an innovation at a point in time – when taken
widely into use it becomes part of the installed base upon which
other software innovations are built. A software product is also
novel in relation to the experience of a particular user
community – if they have never seen or used it before, then it is
novel to them (locally novel) even if it is not globally novel.

Software products can represent an incremental or a radical
innovation. Thus the move from a command line operating
system interface to a graphical windows-based one based on a
desktop metaphor could be understood as a major (radical)
innovation, whereas subsequent improvements, for example
improvements to support the utilisation of various kinds of media
might be understood as incremental innovations. Radical
innovations are usually discontinuous, divergent and often

42

contentious; the emergence of the Mac OS and Microsoft
Windows in the personal computer market signalled the almost
universal adoption of the new style of interaction amongst end
users. However, systems administrators and programmers, with a
much better grasp of the conceptual organisation of an
operating system tended to stick to a command line interface to
Unix and Linux, and the available graphical user interfaces to
these operating systems (X Window, for example) have not
required the same degree of sophistication and polish. However
radical innovations of this type are fairly rare and most innovation
in software products is incremental and proceeds by versioning.
Each new version of an operating system provides an
incremental improvement to the previous one and incorporates
small advances. More major changes are signalled by new
product releases (Windows 3.0, Windows 95, Windows XP, Vista,
Windows 7). Over time these many small improvements
constitute a significant degree of innovation in the product –
accumulated or evolutionary innovation.

IBM's "Window Manager" Patent - January 30, 2001

The preferred embodiments of the present invention provide a
method and apparatus for managing and controlling the size
and location of windows in a GUI-based computer system.
Specifically, a window control mechanism is provided to
enhance the basic functional features of a window in any
windowing environment. By interacting with the window control
mechanism, a user can quickly and easily relocate and resize a
window without unnecessary mouse movement. In one preferred
embodiment of the present invention, the user invokes the
window control mechanism by positioning the cursor over the
title bar of a window and using both buttons of a two button
mouse. In another preferred embodiment of the present
invention, the user invokes the window control mechanism by
positioning the cursor over a window decoration and using both
buttons of a two button mouse. Yet another preferred
embodiment of the present invention allows the user to specify a
keyboard keystroke combination to invoke the window control
mechanism.

43

In addition to novelty, software product innovations display utility:
they have some form of application which users value and are
prepared to pay for. The role of software in developed societies
is extremely broad and some different forms of utility are
considered later in this section. The utility of a software product is
therefore inseparable from the market that the product enters –
which defines what can be paid for a given product at a given
point in time. Market considerations, such as the availability of
rival or substitute products, the cost of the product in relation to
its perceived utility, and the availability of loan capital to finance
the purchase of the product dictate how widely and rapidly a
new software product can be adopted (diffused). Some
exceptions to this principle in relation to open source innovation
and freeware are discussed elsewhere. Market conditions are in
turn affected by wider societal trends, such as changes in
working patterns, or increases in leisure time.

New software is often patented, particularly in the United States,
where the patent laws allow access for a wide variety of
software products. European laws are somewhat more
restrictive, but still allow for many product patents that
incorporate software. Patenting is, for reasons already discussed,
a better indicator for invention than of innovation. Patenting is a
contentious issue, particularly for the free software movement,
and it is unclear whether patenting promotes innovation (by
safeguarding the investment of the original developer) or hinders
it (by preventing the invention becoming part of the (accessible)
installed base so that other inventions can incorporate or build
on it). The result of the diffusion of an innovative software
product should more properly be evaluated by looking at the
change that software facilitates in its user community. Thus
successful software innovation can promote quite widespread
changes in the behaviour of its user community – think for
example of the spread of social networking software such as
Facebook. We use the shorthand of social change to refer to
these changes:

innovation (invention + exploitation + diffusion) leads to social
change.

Social change does not usually indicate a change in a whole
society, but a change in social practice – that is, the way a
group of people habitually behave or interact. Please note that
this formulation does not specify that the change is always
positive for all groups of people at all times. Software innovation

44

is not a universal good, and can easily have effects which many
would not find desirable (in weaponry, for example). Innovations
can throw large groups of people out of work, or disturb the
political balance of power. Social change is, moreover, relative
to a particular user community. This means that a software
application does not have to make a society-wide impact to be
innovative. Examples (like Facebook) which do this are useful
because many can relate to them, but robot laser surgery is a
very significant innovation amongst a tiny group of users: eye
surgeons. Digital sequencers (Garage Band) and music notation
programmes (Sibelius) are a significant advance for song-writers
and composers which also incorporate another social change –
extending the range of people to whom the activity is available.
You can more or less write a song in Garage Band without any
form of musical expertise.

Utility - hierarchies of technical systems
We can examine the extent of social change that a software
innovation can be instrumental in with the help of Altshuller’s

hierarchies of technical systems. This hierarchy illustrates the way
that technology innovations are interrelated and highly
dependent upon each other. We could understand the
transportation system as a very broad society-wide system
composed of many sub-systems. In the table on the right, each
technical system is broken into subsystems which are then broken
into further sub-systems. Chemical bonds are part of the
structure of a brake pad, which is part of a brake pad assembly,
which makes up the braking system of a car which is part of our
transportation system. Changes in the transportation (broad)
system (teleporting, personal flying machine), can have very far
reaching social impacts, where as changes in the focused
(chemical bond) level have relatively little impact (at least in this

45

hierarchy). However the most common way of innovating is
incremental, through multiple innovations in sub-systems. Thus
the design of a car remains relatively stable (four wheels, metal
frame, doors, windows), but many of its subsystems are
continually improved, leading to evolutionary incremental
improvement in the overall design.

It’s also possible to think about software in this many layered
hierarchical way (the OSI model is also a form of hierarchical
layering). Thus massive multi-player online games (something of
a revolution in gaming) are facilitated by many small advances:
in net transport and routing protocols and hardware
infrastructure which make it possible to transmit enough data
and host with enough users, in personalization techniques and in
3D and graphic programming, in algorithms for representing
natural laws (for example gravity) and in techniques in database
farming and distributed applications. World of Warcraft rests at
the top of a pyramid of supporting hierarchies of technical
innovations – where only the combined weight of technical
progress makes the summit possible.

Novelty: levels of innovation
Whereas Altshuller’s theorization of hierarchies of technical
systems can help us understand impact, utility and social
change, his specification of five levels of innovation (together
with research indicating how common the different levels are)
helps us to understand novelty in innovation. The five levels are:

• level 1 - routine design problems solved by methods well
known within the specialty - usually no invention needed.

• level 2 - minor improvements to an existing system using
methods known within the industry.

• level 3 - fundamental improvement to an existing system
using methods known outside the industry.

• level 4 - a new generation of a system that entails a new
principle for performing the system's primary functions -
solutions are found more often in science than
technology.

• level 5 - a rare scientific discovery or pioneering invention
of an essentially new system.

Level 1 innovation is really closer to problem solving in everyday
software design work, which most software developers

46

encounter daily without really thinking of it as especially
innovative. According to Altshuller’s research, the majority
(nearly seventy percent) of innovations can be categorised as
level 1, and about 95% as level 1 or 2. Radical and pioneering
work (level 5) is much rarer (less than one per cent) and often
combined with advances in computer science. Here we could
think of pioneering work with ARPANET, the precursor of the
internet, between the American Defense Department and
computer scientists at American universities including Stanford
and UCLA.

Incremental and radical innovation
Putting theories of
technical system
hierarchies and levels of
innovation together (the
graph on the right) will
also help us to
understand radical and
incremental innovation
better. Whereas level 5
(pioneering) innovations
which contribute to
broad technical systems
(the internet, for
example) will be
experienced as quite radical change by many user communities,
most innovation will take place in more focused technical
systems at lower innovation levels and will be experienced as
incremental innovation. Some work is so focused, and the
innovation level so low, that we would normally think of it as
ordinary design work or problem solving, rather than label it
innovation. However these judgements are always made with
historical hindsight – this is because the impact of an innovation
can take many years to develop.

innovation (invention + exploitation + diffusion) leads to social
change

impact delay: delay between invention and social change
caused by the time required for commercial
exploitation and diffusion to the user community

47

This picture is further complicated by the many incremental
accumulative innovations of the internet and its many sub-
systems as exploitation and diffusion progress over time. Thus the
impact of ARPANET in terms of social change is rather small, and
it is only years later, after many additional developments, that it
can be recognised as part of the radical innovation known as
the internet, which also lies at the summit of the many evolving
technical hierarchies (accumulating innovation) necessary for its
continued development and diffusion.

Utility forms
In his section of the chapter we look at some of the purposes of
innovative software. Software is used in many different contexts,
for many different purposes, which means that it can lead to
many forms of change. In order to correspond with terminology
used earlier, we will look at utility forms – the different ways in
which innovative software brings benefit and leads to change.
It’s impossible to provide a series of categories which cover all
possible forms of utility, but we here specify six utility forms which
give a wide coverage of the range of utility that can be
achieved. The purpose of doing this is to unlock the mental silos
in which many of us operate, where computer science students
may be primarily interested in technical infrastructural issues,
whereas business school students tend to understand computing
as large business applications. Part of innovation is the ability to
relate disparate influences, skills and concepts, and innovators
tend to have both deep expertise, and heads-up overview. The
six utility forms are:

• computing infrastructural
• technology enabling
• user service
• business change enabling
• interaction and communication
• entertainment

This analysis will also give us the opportunity to examine some
concrete examples of innovative software products, and ask why
they should be considered innovative. What do they contribute,
how are they novel and useful, and what kinds of change do
they lead to? These will be basic questions that developers ask

48

themselves when working on new concepts and software
solutions.

Innovation utility form 1: computing infrastructural
Software innovations can provide underlying improvements for
the delivery of other computing services. In this way they help to
move the infrastructure of computing forward, and to build
platforms which enable new types of applications to run. Some
examples could be:

• PC operating systems – providing the platform for
software applications to run on

• network protocols – providing the transmission framework
for the exchange of digital data

• mobile routing – enabling transparent switching between
net cells and service providers

• grid computing – providing the computing environment
for extreme processing heavy applications

Such innovations enable infrastructure change and alter the
practice of software developers and system administrators, but it
could be argued that social change is a secondary effect of
infrastructural innovation. Thus that the internet infrastructure
does not directly influence society at large, but that the
applications that run on it (email, VOIP, messaging, distributed
applications) do.

Innovation example: TCP/IP (1973-8)

It’s hard to remember that computers used to be standalone
devices – a kind of calculator occupying a whole room. The
early implementations of packet switching which enabled the
military ARPANET were developed into the Transmission Control
Protocol and Internet Protocol by Vinton Cerf and his team
based at Stanford University. They ensure that data packages
arrive in the correct order, that they have minimal error, that
duplicate packages are discarded, that lost packets are resent,

49

and manage traffic congestion. The protocols were first
adopted by the American military, then by American computer
manufacturers in the 1980’s. They proved to be extremely robust
(there’s an implementation for carrier pigeons that is proved to
work!) and still form the basis of the extended layered suite of
protocols that enable data transmission on the modern internet.
They are not the cause of the rise of the internet (here there are
other developmental and commercial factors at work) - but they
are a precondition. The internet is associated with a very
significant societal level of social change, described in the
sociologist Manuel Castells’ book ‘The Rise of the Network
Society.’

Innovation utility form 2: technology enabling
Embedded software can enable innovation in other technology
products, such as cars and washing machines. Here the
software is not necessarily the innovation, but the technology
product which it enables is innovative. Many new technology
products such as robot vacuum cleaners, automatic braking
systems, washing machine control systems and programmable
toys (such as Lego Mindstorm) are dependent on embedded
software to provide the part of the functionality of the machine
which is experienced as novel and useful. The software may
require great skill and ingenuity to write, or may alternatively be a
fairly routine programming job. The point is, that it is not directly
the utility of the software that is in question, but the utility it
enables in the new machine.

Innovation example: Copenhagen metro

It can be an unnerving experience to step on a train which
resembles a conventional train and look forward through the
front windscreen directly into a tunnel. For a second you don’t
realise why you are disturbed, but then you realise that you
expect to be looking at the back of the driver’s head – and the
driver isn’t there. The experience can provoke an instant of
resistance – what will happen in the event of an accident or
something unexpected? In this innovation the embedded
software enables the driverless train. Software drives the very
complex control systems that preserve functionality and safety in
the train in the absence of the person who normally assumes
responsibility for control. However the train is experienced as the
innovation – and the complex software systems used to run it
remain out of sight. However the innovation is dependent on
many design and engineering decisions – in which the software

50

plays its part (and the software may also be innovative in its own
right). Though the software and engineering systems are
expensive to build, the train is eventually cheaper to run, since
there are no driver salaries to pay. The innovation can therefore
be expected to be unpopular with at least one group of people
– train drivers.

Innovation utility form 3: user service
Software innovations can provide new, improved, more efficient
or cheaper services for communities of users. These types of
innovations typically take an existing service and provide some
combination of extended functionality, improved usability, cost
saving and/or quality improvement - representing various
aspects of utility for the user.

Innovation example: Skype

Our innovation example here is Skype - an extension to
conventional telephony service. Skype combines internet and
peer-to-peer technologies to provide extended convergent
functionality (phone, chat, address book, video, conferencing,
file exchange). In addition it has good interfaces with the more
conventional land line and mobile telephony services. None of
this functionality is unique to Skype or innovative in itself (though
the decentralised implementation solution is). However the
service provides a convenient package of functionality which is
distinct from its main competitors. The decentralised internet
platform supports one further utility to its customers – it’s cheap.
Cost savings to customers are off-set by a lower level of service
and increased security risks, but many people are able to accept
these.

Innovation utility form 4: business change enabling
Innovative software can be an enabler or driver for business
change. Here it supports new ways of:

• doing business (for example eCommerce)
• internal administration (for example automation of

insurance claims)
• reaching, holding and communicating with customers (as

with Customer Relationship Management systems)
• developing and manufacturing products (as with

Computer Aided Design and robotic production lines)

51

Innovation example: SAP (ERP system)

Enterprise Resource Planning Systems provide integrated support
for most conventional business administration. In the last ten
years they have been almost universally adopted by major
globalised companies, despite very large costs and many
implementation and adaptation problems. They are now rapidly
spreading to smaller firms and to the public sector. In comparison
with the previous generation of function-oriented stand-alone
systems (payroll, human resource management, stock
management), they offer many advantages:

• common data model and database
• customisable interfaces
• variable implementations
• best practice business models
• replaces many function-oriented stand-alone systems
• integrated management information and data mining
• web + eBusiness interfaces
• supply chain connectivity and management

Innovation utility form 5: interaction and communication
Innovative software applications can change the way people
interact and communicate. It’s especially the development of
widespread access to the internet, and Web 2.0 concepts and
technologies, together with good interfaces to mobile devices,
which facilitate these types of innovations. We should distinguish
between email and Skype (where traditional communication
and interaction forms are simply better facilitated) and
applications which encourage rather new types of interactions.
Current innovations in communicative interaction centre around:

• greater reach and range - access to many social
contacts from many geographical ant time zones at a
loose coupled level, where the level of interaction is fairly
superficial

• time independence – storing the context for interaction
and facilitating both synchronous and asynchronous
communications

• supported interactions – offering different opportunities
for interaction such as video (file) exchange and gaming,
or remote interaction through avatars

52

• varying communication media - offering support for
mixed media interaction (voice, text, chat)

• social network building
• on-line persona – control of the way the user is presented

to other users
• platform connectivity – the interweaving of different

mobile and net interaction platforms

Innovation example: Facebook.

Facebook is far from being the first social networking software to
become popular, but has achieved (at the time of writing) levels
of use which far outstrip its rivals, at least in certain parts of
Europe and the US. It supports social networking activities such
as:

• displaying user profile
• finding and making friends
• organising groups
• staying in contact
• dating support
• entertainment apps
• event monitoring and feeds
• email + messaging
• support for file exchange in various media
• notice board (wall)

It has an open API, and anyone is allowed to develop
applications for it, within its editorial guidelines. In common with
many web 2.0 applications it has massive utility for many users,
but not the kind of utility that they will necessarily pay for – so
basic use of the service is free and the revenue model is primarily
based on advertising – which is attractive because of the many
users and access to segmented socio-economic groups.

Innovation utility form 6: entertainment
A relatively large part of modern software innovation is design to
underpin novel entertainment forms. Whereas business systems
underpin our work activities, entertainment systems support our
leisure activities. Some of the most significant developments in
recent years are related to gaming (which has recently become
on-line), media clip (music and video) distribution, and the

53

evolution of user-generated content. Such developments are
dependent on infrastructure improvements (primarily band width
and data storage) but also upon the reach and range of the
modern internet – more users both to contribute and to
participate. The generation of content has also become an
important part of users’ self-expression (you can visit my garage
band compositions at
http://www.reverbnation.com/theelectricmusicbox) and the
border between what is a recreational and what is professional
eroded (as in many bands’ pages at MySpace). The exchange
of this content is an important new form of interaction (see
above). Many people find it more interesting to spend their
leisure time with an interactive computer, than sitting passively in
front of a television.

Innovation example: World of Warcraft

As our example for this type of innovation we can take the
extremely popular massive multi-player on-line game WoW. Here
the technical innovations are concerned with 3D programming
of the virtual world, graphics, and handling multiple players over
the net. Other aspects of the game (role playing, questing,
guilds, levels of skill acquisition, rewards and the fantasy world
background) are familiar from the stand-alone game world.

Work-style heuristic 3 - target your product’s
innovation profile
In this section we investigated
the innovative software
product. This is important for
those who make their living
from software innovation,
since they need to be able to
distinguish an innovative
product, which has a
possibility of finding a niche in
the marketplace, from other
types of software product.
Many software projects are
commissioned, for example
by government ministries, and
are judged by how well the
expectations of the
commissioners are met.

Innovative Software
Product

Innovation profile:

• Novelty
• Utility
• User community
• Social change
• Market
• Technical

innovation
• Infrastructure

d d

54

However some companies, such as Google and Apple have
high innovation expectations, and expect to lead the software
market, not follow it. Many smaller companies operate in niche
markets where they need to stay ahead of their competitors to
survive. The innovative software product was understood to
display both novelty and utility, and can eventually be measured
by its ability to change its user community’s patterns of
behaviour. However this change is subject to impact delay, such
that it is rarely evident in the early stages of product launch. We
can understand utility better by referring to Altshuller’s hierarchies
of technical systems – here we are guide to understand why
some innovations have wide impact, and some others relatively
little. We can understand novelty better with the help of his levels
of innovation theory. Here we understand that the scale of some
innovations is more profound than that of others – from the
solution of routine design problems to pioneering scientific
breakthroughs. Finally we looked at six different utility forms for
software innovations. The scope of software innovation is
extremely broad, but focusing on utility concentrates developers,
attention of the eventual use of their product. Products which
are novel, but not widely used, are inventions; innovations have
to be adopted by their user communities. Think of a highly
successful product such as the Apple iPhone. Now imagine how
many other innovations you have never heard of – the ones that
came to the market, but never really made it into widespread
use. Much of the difference can be expressed as utility.

If we use these ideas, and some from earlier chapters, we can
understand that a software product has a particular innovation
profile, which developers need to understand. Here are the
major components:

• the software has a particular user community, and the
characteristics of that community are understood

• the software is novel – it does something that other
software cannot for its user community

• the software has a particular utility for the community, the
form of which can be understood

• when the software is in use in the user community their
behaviour will be different in certain ways (social change)
and it is understood how

55

• the user community can be understood as a market in an
economic sense, and the software has an economic
value, price and cost which is understood

• the software is technically innovative, perhaps displaying
digitalization or convergence, in the context of a
particular technology trajectory

• the necessary infrastructure for the user community to use
the product is in place, or will be when the product is
released, and is understood.

Sources and further reading:
ALTSHULLER, G. S. (1988) Creativity as an Exact Science, New
York, USA, Gordon & Breach.

Fagerberg, J., C. Mowery, et al., Eds. (2005). The Oxford
Handbook of Innovation. Oxford, Oxford University Press.

56

4. Shape your own process: software
process and innovation

Software processes describe the tasks and actions, the forms and
norms and the formal and informal procedures that lie behind
software development. These are expressed in the methods,
tools and techniques that organize the work of a developer. A
well-known, though oversimplified, distinction that will also be
used in this chapter is between traditional development methods
and agile methods. Traditional methods are structured linear
analysis and design method development methods often
expressed in a series of stages. They focus on rational paper-
based analysis, modelling, linear stage models, documentation
and accountability. There are many hundreds of such methods,
most based to some extent on the simplest expression of a
staged development method: the systems development life-
cycle (SDLC or waterfall model). Well-known examples are
Yourdon, Jackson, Information Engineering, SSADM, Merise,
Euromethod, the more recent generation of object-oriented
methodologies (Booch, Buhr, Coad and Yourdon, Colbert,
Mathiassen et al, Rumbaugh, Shlaer-Mellor, Wirfs-Brock) and (to
some extent) the rapid development methods. Agile methods
(Adaptive Software Development, eXtreme Programming,
SCRUM) represent a reaction to this tradition, and focus on
practical development tasks, programming, prototyping and
customer contact - usually in an iterative or incremental process
which is better at handling change.

In this chapter we will investigate two related, but separate
phenomena. In the first part the focus will be on the processes
that lie behind the innovative software process. A relevant
question to pose here will be ‘how do you develop an innovative
software product?’ As the response to this we will look at six
known innovation process strategies. In the second part we will
instead concentrate on innovation in development processes.
The relevant question is ‘how do we improve (innovate in)
development processes in software companies and teams?’

Software development method – innovation is not a
typical goal
A brief examination of traditional and agile methods will reveal
that producing an innovative product is not really their focus,
purpose or aim.

57

Some typical goals of software development methods are
expressed in the following table.

58

goal method type explanation

complexity
management

traditional organisation of large
development efforts, with
many developers,
requirements, lines of
code, complex
architectures

uncertainty
management

agile,
prototyping

management of
development where
requirements, costs,
technology, people, time
scales are unknown or
cannot be reliably
predicted

project
management

traditional,
agile

planning; disposition and
monitoring of tasks,
people, time and
resources

rational analysis
and modelling

traditional,
contextual
design

understanding a work
situation or user
environment through
models

communication
through
documentation

traditional providing explanations for
colleague developers,
future developers and
users

design through
modelling

traditional structuring design and
programming work

automation of
manual work
processes

traditional,
agile

providing computerised
support for manual work
processes in the work
situation

working code agile focusing on programming
work

speed rapid
development,
agile

producing a working
system in a reasonable
time period

close relationships
with customers

agile,
participatory

improving interactions
between people

59

and users development

Innovation has seldom been the focus of the professionals and
researchers that write normatively about building software. The
most striking exception to this analysis is the business
reengineering movement of the 1990’s where IT was understood
as a potent enabler for business change. Tom Davenport wrote
about process innovation, process visions and organizational
change, Michael Hammer and James Champy about radical
redesign of companies and disruptive technologies and Henry
Johansson about ‘breaking the china’ (a metaphor for radical
change). However this literature was directed at business
managers and consultants, not at software developers, and
business processes were the target for re-invention rather than
application software. Software was understood here not as an
invention in itself, but as the pre-existing facilitator for business
change. It’s therefore hard to find guidance or inspiration for
innovative system builders in this literature.

Linear innovation in industry
Since the processes behind the development of innovative
software are rather poorly researched, this discussion is anchored
in rather better researched models of innovation processes in
production industries. Here is a typical model as described by a
leading researcher in the field.

60

Roberts, E.B., Managing invention and innovation. Research

Technology Management, 1988. 31(1): p. 11-27.

The model is characterized by two features

• its six linear stages or phases (opportunity recognition,
idea formulation, problem solving, prototyping
commercial development, technology diffusion)

• it’s two motivations: technology push and market pull
(discussed further below)

The model describes a linear process which is informed both by
the technological demands of product development, and by

61

the potential demand from the market. The stage/phase model
could remind us of similar linear software development models.

The software innovation life cycle model
A linear account of an innovation process, rooted in a very
traditional account of system development looks like this.

The model represents a rather simplified version of new software
application development in large software firms. It is nicknamed
‘the light bulb model’ to indicate that it is dependent on a novel
software product idea as the inspiration that sets the process in
motion. However the idea that innovation is principally
dependent on an inspirational idea (discovery point), though
intuitive, is shown by the psychology of creativity to be
oversimplified. The waterfall shape indicates a sequence of
stages or phases each of which is dependent upon the
successful completion of the first. The concept for the software
product needs to be fully evolved at an early stage, before its
realization in code, though there is some room for improvement
though prototyping. The original product idea represents the
primary innovation, though there is also room for incremental
innovations in subsequent releases of the software.

Iterative software innovation process models

62

Roberts’ model of industrial product innovation can be related to
traditional software development models, but there are also
iterative models. Boeing’s innovation model (Lind, 2007) with its
discover-decide-develop-deploy cycle, is appropriate for a large
technology company with many innovation projects running
concurrently, and a portfolio of research and development
spanning minor improvements through blue sky research with no

obvious applications in the near future.

Agile software development techniques are also primarily
iterative in character (see the illustration of the SCRUM process),
though rather more informal in character than Boeing’s. Agile
methods are not primarily focused on innovation, but Aaen’s
ESSENCE (discussed more thoroughly later in the chapter) offers a
glimpse into an iterative, informal software innovation process.
Such a process does not necessarily start with an ’idea’ - a fully-
formed software concept at the beginning of development.
Innovation instead takes place through highly focused and
creative bursts of development activity – ‘storming.’ Creativity is
in focus throughout the life of the project, and is not confined to
an idea generation phase at the beginning (thus Aaen proposes
three development modes for developers to work with - idea
generation, planning, growth - rather than a linear phase model).
The creativity and energy of the process offers the conditions for
innovative programming and development. Creativity
techniques and games take the place of formal rational analysis.

63

Do agile methods promote innovation?
Many developers may
suspect that agile
methods offer a
software process that is
more conducive to
innovation. It has been
pointed out that some
aspects of agile
methods resemble
innovation techniques
elsewhere in industry (like Boeing’s process). It’s clear that the
introduction of agile methods to a traditionally-oriented software
firm can be a process innovation. There are also some
theoretical reasons to believe that they should be helpful for
innovation. Flexibility helps deal with the uncertainties of working
with leading edge software technologies, bureaucracy (avoided
in agile methods) is a known creativity barrier, and interaction
with customers develops domain knowledge. However agile
methods were developed in response to the perceived need for
more effective, programmer-friendly development methods - not
in order to further innovation. There are few studies or evidence
which supports the idea that agile methods lead to more
innovative software products than traditional methods. Furious
development in response to rather un-reflected use cases and
feature backlogs may actually hinder innovation by removing
the incentive and opportunity for idea generation. It’s possible to
argue that some elements of agility are necessary for an
innovative development process, but an agile process will hardly
be sufficient.

Market-led and technology-led software innovation
Roberts points out that technology innovation is influenced both
by technology developments and potential markets. We could
thus understand software innovation as either primarily market
driven, or primarily technology driven

64

market-led technology-led

user communities have sets of
needs which develop over
time

software technologies develop
in particular directions at various
speeds

some software firms have a
very good understanding of
their users’ needs, and the
markets they compete in

some software firms are at the
leading edges of those
developments

user and market needs can
be analyzed and, to some
extent, predicted

leading edge software
technologies enable new
products which will create their
own demand in the market

the innovative software
development process is
targeted at responding to
perceptions of future user
needs (the market)

innovative software
development process is
targeted at providing novel
technology products which
have not previously been
possible

Thus some software development firms will define themselves by
their relationships with their customers, and their focus on
customer needs, whereas the identity of other firms will be more
closely connected to their ability to be at the breaking edge of
technology development. However the two perspectives are
not entirely mutually exclusive; many firms keep an eye on both
technology and market. Nevertheless current understandings of
software development processes are very heavily focused on
responding to user needs, rather than understanding the needs
of a market, or working with leading edge technologies.

Improvisation, bricolage
An underlying process model, whether traditional or agile, only
provides a skeleton underpinning the work of software
innovation. Improvisation and bricolage flesh out the skeleton,
whatever the underlying process. Developing technically
exploratory software involves manoeuvring in uncharted waters,
where development platforms are uncertain and untried, so it is

65

unlikely that generic process models or formal development
methods can provide enough support for the developer.
Progress in response to complex and rapidly developing problem
solving tasks will always depend on the creativity of the individual
developer and the team. Improvisation implies the pre-existence
of a set of resources (plans, tools, knowledge, and social
structure) as the basis for variation. The wider the cumulative
experience of the team, the greater the opportunity for variation,
but not all variations are appropriate, or likely to lead to a
successful problem solution. Improvisation represents a
sequence of deliberate choices in a situation, not a series of
accidents. Nevertheless it is extemporized during action –
without prior plan or method. In a development situation,
improvisation often takes the form ‘let’s try this……:’ a customer
meeting, a programming technique, a diagramming technique,
a different hardware component. Improvisation is the natural
response to complex problem situations which cannot be
planned or fully anticipated in advance, but whereas planning is
usually based on rational analysis (estimation, resource
management, task distribution, budgeting), improvisation is
inspirational in character. This does not mean that it is
unreasoned, but rather that the time, resource or knowledge
necessary for rational planning is not available.

Bricolage, the use of whatever resources and repertoire one has
to perform whatever task one faces, is a related idea. Imagine a
craftsman repairing a machine. His workshop is full of tools and
spare parts – the results of many years of building and repairing
similar machines. The damaged machine needs a new part but
it will take three weeks to arrive, and a special tool to install. He
takes a similar part from his shelf, puts it on the lathe and
machines it to size, and installs it by improvising a tool from other
tools in the workshop. The repair takes half an hour instead of
three weeks. In the software situation, developers bring all kinds
of techniques and programming knowledge from earlier projects
and have previously developed applications stored on their hard

disks. There are code
components

designed for re-use,
and many open
source applications
and routines. There
are known

programming

66

algorithms in text books. Sometimes problems are solved by
throwing things from programmers’ repertoires together rather
than by solving all problems from the ground up by logic.
Sometimes this is also a source of innovation and inspiration –
creating new ideas through unplanned juxtapositions.

Most software projects can be understood as an instantiation
(tailored adaption) of a generic process or method. No
normative process or method can ever anticipate the situation of
a real project and fully meet its needs. In addition, whatever the
generic process and its tailoring, unforeseen events will always
require a certain amount of improvisation and bricolage. In non-
innovative (routine) development projects we have come to rely
rather heavily on following an established generic process. In
fact, some formal software process improvement techniques,
such as the Capability Maturity Model are designed to enforce
compliance with a company’s generic process. In an innovation
situation however, there are likely to be many complicating
factors (such as new technologies and very uncertain
requirements) and a great deal of change. Projects often lose
focus, go down blind alleys or get stuck. Here it will not usually
be enough to adopt a pre-defined process and stick to it, even if
such a process existed. The role of improvisation and bricolage
will be crucial in overcoming these situations, and a critical
survival instinct will be to recognise when the development
process is no longer productive, and to adapt it in a direction
which will move the project forward.

Six innovation process strategies
Though there are few methods and process frameworks which
specifically address innovation in software development and, as
yet, little discussion in the normative systems development
literature, there are a number of innovation process strategies
which can be understood and adopted. The six that are
discussed here are:

• creative requirements analysis
• the designed process framework
• low tech prototyping
• user-driven software innovation
• community development
• the research prototype.

67

Innovation process strategy 1: creative requirements analysis
Where a software innovation lifecycle (light bulb) model is
envisaged (with a consequent need to determine the shape of
the software product early in the process) the logical focus will
be upon the requirements phase – where the specification of the
product is elicited from its future users. There is quite a lot of
research into creative requirements analysis. It tends to focus on
replacing conventional requirements engineering with more
imaginative interaction and creativity techniques. Many of the
techniques employed (e.g. Soft Systems Methodology, RESCUE)
involve facilitated workshop activity with users. RESCUE
(Requirements Engineering with Scenarios for User-Centred
Engineering) uses conventional requirements analysis techniques
(activity modelling, system goal modelling, use cases, context
diagrams, storyboarding, requirements management) and
combines them with techniques from creativity theory. Scenario
based walkthroughs are used to hold different ideas in play.
Workshops are organised to support the phases of preparation,
incubation, illumination and verification (see chapter 5). The
process is organized around creativity modes: exploratory,
combinatorial, and transformational. It also employs the use of
reasoning by analogy and metaphor. These techniques seek to
establish a more creative relationship with users and customers,
whereby more imaginative product ideas can be elicited and
formulated into something resembling a conventional
requirements specification. The role of the facilitator is not, as in
conventional requirements engineering, to determine a set of
requirements expressed by users, but to help the users to think
more imaginatively about their work situations, about new and
different ways of working, and about the software features that
can support these. The facilitator will also teach the techniques
which underpin creative user thinking.

Though particular types of users (lead users) drive innovation in
other contexts (see below), experience shows that there are
some limitations to the creativity of user groups. User groups are
often bound to their habitual ways of doing things, threatened
by change, and intimidated by expert developers. They are
seldom good at understanding the relevance or work
implications of emerging software technologies with which they
are not familiar. It should also be noted that much software
innovation by software firms is not driven by a relationship with a
specific user group, but by more general market considerations.

68

Here the innovative product thinking must come from the
developers themselves.

Innovation process strategy 2: designed process framework
Researchers and practitioners interested in software innovation
have the opportunity to design normative frameworks in the long
tradition of the evolution of method in software development.
Such a designed framework will normally combine some tools,
techniques and practices with an underlying process model to
give guidance to teams working with innovation and creativity in
mind. Those frameworks are slow to appear, but the most
mature to date is Ivan Aaen’s Essence. Essence belongs to the
agile tradition, borrows several ideas (for instance the explicit use
of roles) from that tradition and can also be used in conjunction
with well-known agile methods such as SCRUM and XP. It is a
process framework, rather than a formal development method.
ESSENCE can stand alone, but is designed to be used in
conjunction with a particular infrastructure - an arrangement of
space which utilises haptic thinking to establish particular work

views on each of the four walls
of a room. In the Software
Innovation Research Laboratory
(SIRL) at Aalborg University, four
large interactive screens
represent ESSENCE’s four views:
product, people, project,
process. The product view is
used for the various depictions
of the system that will be built
(metaphors, function lists,
architectures, object models,

code). The people view represents the user domain – the work
systems, requirement suggestions, use patterns and examples
and the various communications with users. The process view is
used to explicitly depict the development process, to adapt it to
changing circumstances and to make sure that appropriate
tools, techniques and practices are deployed in order to respond
to changing circumstance and keep the project moving
forward. Finally, the project view is used to manage the project –
to ensure that schedules and sprints are established, that work is
distributed sensibly and that deadlines are adhered to. Four
distinct roles are employed: challenger, responder, anchor and
child. The challenger represents the customer, user or product

69

owner - the person with the domain knowledge and vision for the
product. The responsibility here is to articulate the software
challenge. Responders are developers whose job it is to prepare
ambitious responses to the challenge. The anchor has the
responsibility of facilitating the project: making sure that the
process and roles are working and intervening and proposing
adaptations if there are problems. Anyone can temporarily
adopt the child role at any time – in this role one is empowered
to ask the naïve question or make a divergent or counter-intuitive
suggestion. In addition to views and roles, Aaen proposes three
activity modes: idea generation, planning and growth. The
modes are neither sequential, nor strictly iterative but are
intended to be alternated in response to project circumstances.
Idea generation usually relates to developing ideas for the
project, but can also be used where there are process problems.
Planning relates to the organization of the next part of the
project, whereas growth is primarily dedicated to programming -
building the product. In the work done at Aalborg University, the
idea generation mode of ESSENCE is often integrated with
creativity techniques such as the ones described in chapter 7.

Whereas users are primarily responsible for creativity and
innovative ideas in creative requirements analysis, this
responsibility is placed firmly in the hands of developers in
ESSENCE. The rationale for such a designed process environment
is to help developers to work creatively.

Innovation process strategy 3: low tech prototyping
Prototyping, according to Tom Kelly, is the shorthand of
innovation. Prototyping is used in system development in many
contexts: horizontal prototyping represents a high level view of a
complete system, vertical prototyping an in-depth representation
of a particular set of functionality. Throwaway prototyping
develops systems which are never intended to be the basis of
commercial production software, whereas evolutionary and
incremental prototypes represent early stages or parts of an
eventual finished system. The conventional rationale for using
prototyping is an improved dialogue with users and customers,
and prototyping as a development approach nearly always calls
for iterative review by users. In the innovation context this can
certainly be useful, but the primary form of prototyping will be
low tech (or low fidelity), and the principle rationale will be low
cost experimentation and rapid learning. High tech prototyping
has a tendency to lock developers into system ideas which have

70

been heavily invested in, whereas low tech prototyping allows
experimentation with little investment as part of the generation of
many ideas or scenarios for a product. A low tech prototyping
process will allow much room for experimentation with different
inexpensive prototyping forms, before moving to more
conventional code prototypes which require more investment of
coding time, and are thus harder to discard.

low tech

 lists and pictures feature list, simple architecture or
component diagram, rich picture

 paper
prototypes

sketches, wireframe, storyboard,
card, wizard-of oz

 low-fi mockups foam and cardboard models,
drawing tool, video, PowerPoint,
html

 existing code re-
combination

mash-up, patchwork

 code simulation screen generators, application
definition or simulation software,
component reuse, open source
components

 code
prototypes

rapid application generators,
visual basic

high
tech

A project using a low tech prototyping strategy might start with a
list of possible features and a rich picture of some users with their
system in a work situation, move to making paper prototypes –
sketches of screens, a storyboard - and then make a very simple
PowerPoint representation of the system’s main screens. None of
these representation forms consume much time, so many
strategies and alternatives can be kept alive, discussions with
users can continue, and prototypes can be improved, radically
adapted, combined and discarded many times. When a
direction is established, more effort-intensive prototypes can be
developed: html mock-ups, mash-ups and patchwork
prototypes. Here many things may be borrowed, copied and
slung together to give higher fidelity, but still without the

71

commitment of extensive coding. Even as ideas become
reasonably firm, many tools exist which simulate or automate
coding work to allow experimentation with systems which have
partial functionality and some degree of realism and can be
further explored with users in real situations. Only when the

product idea is well-
established will
coding begin in
earnest.

In the example on
the left, a feature list
was developed by
interview and
questionnaire with
users before
developing some
wireframe paper
prototypes which
investigate different
structures of the
front page of the
system. The next
prototype was
made in PowerPoint
and automates

progression between the various screens and some approximate
content. The final prototype (before coding) looks fairly realistic
but is an html mash-up – hardly any of the functionality works and
many screen elements are cut and pasted - for example the
calendar is nothing more than a screen dump from Microsoft
Outlook. Each of the prototypes also served as a discussion
piece with users.

Innovation process strategy 4: user-driven software innovation
Users are a very potent source of innovation in some situations
and markets. Many users are driven to innovate because of their
perceived work needs. An eye surgeon anticipates the need for
a robot that can carry out surgery with a precision that cannot
be achieved by the human hand. A stock market analyst needs
a tool to gather and process large quantities of stock movement
data and analyze it against a particular algorithm. A
development manager responsible for enterprise resource
planning systems with a very large number of diverse users needs

72

to collect and analyze requirements for the next release. In each
of these cases the user has a specific need, and a complex
domain knowledge which is extremely hard for an analyst or
programmer to acquire. The perceived need may be emerging
and is therefore not (yet) recognized by software development
firms. The need may be rather specific, making it too costly to go
out and learn the requisite domain knowledge; it may be a niche
market which is not yet attractive for developers. Domain
knowledge that is difficult to transfer from users to manufacturers
is known as sticky information. In these cases a particular kind of
user can drive software innovation. Such a lead user is at the
cutting edge of their profession (thus has demands that are not
yet met) and normally has unusually well-developed software or
computer competences. These competences are unlikely to be
engineering or programming competences, but may involve a
familiarity with software packages acquired in their practice, and
the ability to conceptualize and describe a new software
application, or to articulate their requirements in an unusually
precise and logical way. Lead users also have much to gain
from the innovations they participate in.

For developers, working with lead users poses a number of
problems which are not easily solved through their engineering
training. Much of conventional development practice is
predicated upon the idea that user domain knowledge is (easily)
transferred into the head of the developer and from there to a
working program. Developers conduct analysis studies, or work
through conversations with onsite customers. In user-driven
innovation the attempt to understand the user domain may be
abandoned, and the primary role of the developer may
become facilitation – helping the lead user(s) to express their
innovation ideas as code. Sticky solution-side knowledge
belongs to the developers, but sticky domain, problem and need
knowledge remains with the users, who must therefore be
incorporated into the design process. Here a ‘toolkit’ will be
valuable. This, according to von Hippel and Katz, will have the
following five characteristics:

• it will enable users to carry out complete cycles of trial
and error learning

• it will offer a solution space encompassing the software
designs the user wishes to create

• the toolkit can be operated by the user using their own
design language and skills, without advanced
programming skills

73

• it will contain libraries of previously developed modules or
components which the user can incorporate in their own
designs

• it will ensure that the resulting design can easily be
transferred to the production environment of the
developers without requiring massive re-programming.

High end toolkits will be used to include users in the innovation
process, whereas low-end toolkits facilitate tailoring and
personalisation of software by users. Many Web 2.0 software
providers provide toolkits exhibiting some of these features – for
example the Google maps API which makes geographic-
oriented application development available to programmers
with general skills. Even simpler to use are Google gadgets and
the many widgets available to users of social networking services.
Computer game developers provide level builders, character-
building kits, and scripting languages which allow tailored
gameplay within the game environment (mods).

Innovation process strategy 5: community development and the
open source model
Sometimes lead users form communities – sub-sets of professional
bodies with a particular interest in developing new computerized
work tools or gaming platforms. An example is the Linux
community. Here the developers are also the lead users for the
operating system they develop and refine. The next innovation
process strategy was discussed in detail in chapter 2 and is
reiterated briefly here. It embraces the advantages of web-
based mass collaboration:

• peering - voluntary collaboration between free agents
based on a de-centralised, non-hierarchical model

• sharing – knowledge sharing as the basis of collaboration
• openness – free access to ideas and code
• acting globally – (net-based) access for a wide user base

to promote the flow of idea and knowledge exchange.

Web-based mass collaboration is combined with a strongly
incremental and iterative development strategy which should be
understood as bottom-up continual improvement. The initial
development effort may be carried by a small number of
talented individuals, but once the community reaches its critical

74

mass many individuals may contribute to both extending the
content and functionality of the software, and to improving the
quality of the code base. Open-source development is
associated with a new innovation model - the private-collective
model - but we can distinguish several types of open innovation.
Two particular kinds of community development are highly
innovative:

1. the lead user community - where the developers are also
expert users with a strong need for new product features
to manage their own work-lives. An example here is the
Apache Software Foundation, with their suite of products
for software developers and administrators

2. the platform/content model, where the developers are
responsible for the software platform, but the user
community is largely responsible for content. The
technical platform for Second Life is provided by Linden
Labs, but the game is nothing without the extensive in-
world experience which is entirely provided by the user
community, using the toolkits made available to them.

Innovation process strategy 6: research prototype
The last innovation process strategy is again collaboration-
oriented, but this time with the objective of matching different
kinds of research and development expertise. The model is
extensively run by the European IST (Information Society
Technologies) framework programs for research into ICT
(Information and Communication Technologies). The frameworks
provide for several different research instruments, but most
demand:

• a mixture of private and public funding

• groupings of organizations, called consortiums, spanning
both research organisations (such as university
departments), software and hardware development
firms, and (often) user organisations

• the development of working prototypes, called
demonstrators.

The projects also provide access to a variety of other innovation
services encouraged by the EU such as partnering, networking

75

and innovation-friendly procurement. The rationale for this
innovation strategy combines collaboration with researchers and
developers at knowledge boundaries with a non-commercial
funding mechanism which allows for experimentation without
serious penalties for failure. However the strategy demands a
relatively well-articulated product idea with an expected
societal benefit and a track record in research and innovation as
the price of entry to the European system. There is no proscribed
development approach or method, but the review system
strongly encourages formal project management. The National
Science Foundation organizes similar programmes in America

Software process innovation
A further aspect of this process chapter concerns new software
processes and how they come into existence and become
employed.

It will help us to distinguish between the global picture – how
novel software processes are designed in the abstract, and the
local level – concerning actual practices in software companies
and development teams.

The global picture
Methods and software development techniques have been in
constant evolution since the early days of software
development. There is a strong normative tradition, where
experienced practitioners and academics write books and
articles describing idealized and generalized processes, which
practitioners are supposed to implement in their work. Traditional

76

methods are often
elaborations of variants
of the waterfall model,
or some variant of
prototyping. Classical
project management
and software
engineering techniques
such as estimation, risk
management,
configuration management and various test strategies are also
well established. There are many thousands of incremental
innovations to these established techniques, and more appear
every year. Relatively few of them become well established in
practice, either because practitioners cannot see value in them
or find them hard to learn and adopt, or simply because they
never become widely known.

At the same time there are several more radical software process
innovations currently in focus, most of which respond to a
perceived flaw in the traditional norms.

77

innovation examples perceived flaw in
traditional software
process

participatory
development

ETHICS,
Scandinavian
school

responds to lack of
serious user involvement

context-aware
methods

Contextual Design responds to heavy focus
on computer system
design

rapid
development

RAD responds to poor speed
of delivery

test driven
development

TDD responds to lack of rigor
in delivering bug free
code

agile methods XP, SCRUM responds to analysis-
heavy and programmer
unfriendly

open source LINUX, REDHAT
projects

responds to hierarchical
and commercially
oriented development
style

business-
focused

Business Process Re-
engineering

responds to inability to
focus on business
process innovation

systems theory-
focused

Soft-Systems
Methodology, User
Centred Design

responds to heavy focus
on rational analysis and
hard systems tradition

This represents a complex picture of both incremental and
radical innovation in software methods, techniques tools and
processes.

The local picture
Though the global picture of software process innovation is one
of constant evolution, the relationship between these rather
abstract systems of normative ideas and what really happens in
practice is a complicated one. Many software firms and
development teams have years of history with traditional
methods, and these are firmly embedded in their work practices.
It’s natural to want to improve the way you work, and software

78

firms often have method departments and process improvement
initiatives which are dedicated to achieving these ends.
However the weight of tradition makes it easier to introduce
incremental improvements which create less disruption and
require lower learning curves. The benefits of more radical
innovation at the local level, such as a move to contextual
inquiry or agility, are often speculative or unknown, requiring a
large leap of faith. Software process improvement (SPI),
developed at Carnegie Mellon University is a relatively well-used-
way of focusing on software process, and produces process
innovation in many companies that take it seriously. However
the level of innovation is local; SPI enforces compliance to rather
traditional normative development models which may be new to
the company concerned, but are well-understood at the global
level.

Work-style heuristic 4 - Shape your own process
In this chapter we investigated which software processes are
used to build innovative software, and how software processes
innovate. Innovation models from industry can be related to the
development models we are familiar with, but there is little
research into software innovation methods, or innovation-
focused normative tradition to lean upon. The chapter
distinguished six innovation process strategies:

• creative requirements analysis
• the designed process framework
• low tech prototyping
• user-driven software innovation
• community development
• the research prototype

Whereas the first three strategies are conventional process
strategies, which articulate in some respect what the developer
should do and when they should do it, the last three are
principally collaboration strategies. These reflect the strong
presence of the network/community model in innovation theory.
However, process, method and collaboration considerations are
only one of a number of factors which enable software
innovation. Moreover the special circumstances, risks and
degree of change involved in being at the leading edge of
technology development make it unlikely that the semi-formal
generic methods in the system development literatures will be

79

successful. We are left with more general guidance frameworks
– and the improvisation and bricolage skills of experienced
expert developers.

The absence of a golden process route has a particular
consequence: the innovative software developer must take
control of the process. If different process and collaboration
strategies show potential for helping innovation, then developers
must mix and match them appropriately. If the development
style in a particular software house hinders innovation in a
particular project then developers must modify it. If there are
many complex problems and no pre-determined methods for
solving them, the developer must adjust the development
process and solve them as they arise. When the project is stuck,
and little progress is made, then the developer needs to
introduce something into the process which allows it to turn the
corner. An innovative software development does not need to
be a process inventor - there are many appropriate strategies
tools, techniques and practices – but they need to be a process
shaper. The process by itself will never guarantee success.

Sources and further reading:
BANSLER, J. & HAVN, E. (2004) Improvisation in information
systems development. IN KAPLAN, B. (Ed.) Information Systems
Research. Boston, Springer.

DEARDEN, A. & HOWARD, S. (1998) Capturing user requirements
and priorities for innovative interactive systems. Proceedings of
the Australasian Computer Human Interaction Conference, 160–
167.

DUGGAN, E. W. & THACHENKARY, C. S. (2004) Integrating nominal
group technique and joint application development for
improved systems requirements determination. Information &
Management, 41, 399-411.

FLOYD, I. R., JONES, M. C., RATHI, D. & TWIDALE, M. B. (2007) Web
Mash-ups and Patchwork Prototyping: User-driven technological
innovation with Web 2.0 and Open Source Software. HICSS 2007:
40th Annual Hawaii International Conference on System
Sciences. Hawaii.

HOLMQUIST, L. E. (2004) User-driven innovation in the future
applications lab. CHI '04 extended abstracts on Human factors in
computing systems. Vienna, Austria, ACM.

80

KELLY, T. (2001) Prototyping is the Shorthand of Innovation. Design
Management Journal, 12, 35-42.

LIND, J. (2007) Boeing's Global Enterprise Technology Process. IEEE
Engineering Management Review, 35, 38-52.

MAIDEN, N., MANNING, S., ROBERTSON, S. & GREENWOOD, J.
(2004) Integrating creativity workshops into structured
requirements processes. Proceedings of the 5th conference on
Designing interactive systems: processes, practices, methods,
and techniques. Cambridge, MA, USA, ACM.

MAIDEN, N. & ROBERTSON, S. (2005) Integrating Creativity into
Requirements Processes: Experiences with an Air Traffic
Management System. Requirements Engineering, 2005.
Proceedings. 13th IEEE International Conference on, 105-116.

ROBERTS, E. B. (1988) Managing invention and innovation.
Research Technology Management, 31, 11-27.

VON HIPPEL, E. & KATZ, R. (2002) Shifting Innovation to Users via
Toolkits. Management Science, 48, 821-33.

AAEN, I. (2008) Essence: facilitating software innovation.
European Journal of Information Systems, 17, 543-553.

81

5. Develop your personal creativity: the
creative software developer

Creativity is often understood as a mental quality, ability,
orientation, state of mind or set of skills. This means that the most
advanced understandings of creativity are delivered by
psychologists. Creativity implies novel and unconventional
thinking, motivation and persistence, the ability to work with
vague and poorly defined problems, and heuristic rather than
algorithmic thinking. Creativity studies have two different foci
which are not always well differentiated. Creativity is studied in
the creative arts: music painting, literature, etc. Creativity is also
studied in the context of scientific invention and innovation, and
it is this form of investigation we are primarily interested in. Many
researchers have also been interested in creativity in the systems
development process. They usually consider creativity to be an
important asset in a software developer (otherwise they would
not be interested in the topic) but are less good at specifying
exactly why this should be the case. Among the questions that
these researchers investigate are:

• What does creativity bring to systems development?
• Can creativity be learned?
• How do you measure and evaluate creativity in software

products and processes?
• Are systems developers more creative than other

professionals?
• How do you create work conditions which stimulate

creativity?
• Can creativity in software development be learned?

Rather than try to answer these questions one by one, this
chapter will describe eight different approaches to the study of
personal creativity in software development. The intention will
not be to try and prescribe how a developer or programmer
should be creative, but to understand and characterise the
different ways creativity studies are used to shed light on
software development work and personal creativity. If you have
been though a conventional systems development or software
engineering education, or studied the mainstream literature it is
quite possibly the first time that you this topic has been raised for
you. The literature largely makes the assumption that system

82

development concerns the precise application of a set of
engineering techniques and skills in order to automate a manual
business process. Yet programming is an intensely creative
activity – you start with nothing and slowly build a working
application in which a myriad of design decisions are
incorporated. Design literatures are rather different, emphasising
the value of creativity and the fusion of function and aesthetics –
so it may well be that the conventional system development
assumptions are misplaced.

Creativity as the developer’s mental process
The psychologist G. Wallas in his book The Art of Thought (1926)
identified five stages in the creative process, seen as a personal
intellectual act.

1. preparation (preparatory work on a problem that
focuses the individual's mind on the problem and
explores the problem's dimensions)

2. incubation (where the problem is internalized into the
unconscious mind and nothing appears externally to
be happening)

3. intimation (the creative person gets a 'feeling' that a
solution is on its way)

4. illumination or insight (where the creative idea bursts
forth from its preconscious processing into conscious
awareness); and

5. verification (where the idea is consciously verified,
elaborated, and then applied).

Most system developers and programmers are familiar with this
process – even if they do not articulate it in this way. Fixing an
annoying programming bug may take some minutes (or hours) of
staring at the code, trying to understand the way it is
constructed, its purpose and intention and what is wrong with it.
Hypotheses for identifying the exact nature of the bug are
formulated and some experiments for fixing it are carried out.
Eventually the problem comes into focus and the programming
mistake is identified, rectified and tested. There may be a
particular moment of insight, which could variously be described
as an ‘aha’ moment, or a flash of illumination. The light bulb is
used as a universal pictorial symbol for this moment, and we
sometimes refer to it as a ‘discovery point’. At other times the

83

discovery point may be elusive – the bug may remained unfixed
for hours or days, and the discovery point may happen in the
midst of some un-related activity – showering or preparing food.
Suddenly the problem solution is clear and it only remains to run
to the computer and execute it. Most systems developers are
extensively trained in rational problem solving and learn to
articulate problems and their solutions through engineering
formalisms, but Wallas reminds us that much of the creative act
lies outside our conscious mind. The unconscious part of the
mind continues to generate ideas and weigh solutions even
when the rational thought process is focused elsewhere, and
there is increasing evidence that sleep is an important time for
unconscious mental processes. This is why stress is not conducive
to creativity. Sometimes the most intelligent way to solve a
difficult problem is to take a break and think about something
else.

Creativity as a set of personal competences
In a software developer, creativity could be understood as a set
of personal competences, in the same way that professional skills
like object modelling, algorithm design and experience with a
particular programming language are understood as
competences. Thus a developer or project manager could
understand their existing creativity competences and set out to
improve them. Creativity competencies are concerned both
with solving problems and with recognising opportunities. This is
an important distinction.

• Problem solving requires an internal focus on a worrying
aspect of a project: a program that doesn’t run, a model
that is incomplete or a customer who is unhappy.
Engineering techniques and rational thinking are the best
tools we have for problem solving. However everyone
who has been in a difficult development project knows
that you sometimes also need inspiration, gut-feeling and
the courage to proceed in an incompletely understood
direction. Herbert Simon explained this with the idea of
‘bounded’ rationality: the limits of our human capacity to
analyse complexity and the consequent need to take
decisions which lie on the borders of, or outside our
rational analysis.

84

• Recognising opportunity, on the other hand, requires an
external focus, an overview of what is happening around
you, a sense of the boundaries and limits of a given
technology or business process (and how these limits can
be extended) an ability to relate apparently
unconnected phenomena. A shorthand for this way of
thinking is ‘heads-up’ developing – that is a style of
developing where the participants make conscious
efforts to be aware of many aspects of what is going on
around them, rather than solely focusing on the code
editor on their screen.

If you work in an organisation and are asked to build a mobile
commerce platform, then you have a problem that needs to be
solved. If you work in a company that develops mobile
applications and you talk to a friend in a company that sells
though a conventional ecommerce platform then you can
recognise an opportunity.

Here are some competences which creative software
professionals can be expected to exhibit:

• They should be able to cope with poorly-defined
problems. There are many of these in system
development: incomplete requirement specifications,
new technologies which are relatively unknown,
development methods which only partly serve to
organise a sensible development process, customers who
are not happy, deliverables which are behind schedule.
In each case the art is to be able to make some progress
in the project which also serves to reduce uncertainty.
Thus a solution to an incomplete requirements
specification could be to prototype some known
requirements and then ask the customer to consider what
is missing. Now there are two steps forward, there is a
small prototype and there is more information about the
customer’s needs.

• They should be capable of novel and unconventional
thinking, and not be locked in to a pre-defined position
(for example that a database time stamping problem is
always solved with a particular technique or algorithm).

85

• They should be self-motivated and take the initiative for
problem solving or opportunity recognising, and they
should not be reliant on a project manager (or other
superior) to define their work and monitor whether it is
done well.

• They should show persistence – the ability to follow a
work-situation through even when it becomes difficult or
uncomfortable. However staring at a bug for five hours,
when your more experienced colleague could have
spotted it in 30 seconds is not persistence, it’s bad
teamwork.

• They should display heuristic, rather than algorithmic
thinking – that is they should be able to respond to
developing situations rather than to stick slavishly to a pre-
programmed plan of action. Thus experienced
professionals seldom follow a given design methodology
rigorously, they apply and adapt it to a given
development situation.

Most of these competences are not innate – that is they are not
determined by the psychological make-up of the individual
which cannot be changed. Therefore there are not creative
and un-creative personality types, and creativity competences
can be evaluated, learned and improved. Moreover
competence is always experienced-based as well as expertise-
based. This means that developers who know a programming
environment and application area extremely well, and have
worked on comparable types of problems before are likely to
have better creativity competencies than inexperienced
developers. They have many relevant experiences which can
be drawn on to expand the range of possible solutions that they
can consider.

A further creativity competence is the ability to keep many
aspects of a problem in play simultaneously: overview. Providing
an innovative solution to a development problem may be
dependent on the ability to relate facets of the customer’s
business model, the projected user experience, some usability
principles, the underlying data-model, a mathematical theory
behind double entry book-keeping and a little-known design
pattern. The point is that the solution may not be available to
someone who cannot see the bigger picture. Most engineers
and analysts have very well developed conceptual modelling
skills - they learn to use many diagrammatic forms for expressing

86

program structures, architectures, information flows and data
structures. A program can itself be understood as a model of a
part of an external reality. Conceptual modelling skills are very
useful in fostering overview, and understanding the relationship
between many complex facets of a development task. A simple
mind map, drawn on a whiteboard, can be a breakthrough in a
system design if it re-organises significant components in the
design, and represents them in a simple way which everyone
can understand and work towards.

Creativity as a style of thinking
The recognition that personality types do not determine creativity
(or lack of it), led American business psychologist William Miller to
develop different styles of thinking which could lead to
innovation. He developed a questionnaire which would help
people understand which kind of innovative personality they
displayed. The styles are often used in business consultancy and
you can find and take the test on the web.

The four innovation styles are:

• Visioning – using one’s instincts, insights, and intuition to
focus on an idea for how something could be in the
future, and carrying it through with persistence and
determination.

• Exploring – taking a new and unknown direction, looking
around for solutions in unexpected places, having many
competing ideas and following them to see if they lead
somewhere.

• Experimenting – meticulously following a series of
alternatives in pursuit of a given idea until the optimal
solution is found, applying established processes and trial
and error.

• Modifying – working with and adapting existing ideas,
products and processes to produce something new and
useful.

How do you approach a development project? Can you see a
new device or application which allows a group of users to work
in an entirely new way – you have vision. Do you generate many
ideas and solutions to problems and run them past your team to
see what reaction you get – you explore. Do you like to play with

87

some rapid development tools and make a few screens or simple
prototypes to stimulate the imagination – you experiment. Do
you look for an open source solution or refer to a code reuse
library as a starting point - you modify. Most people tend to one
of these styles – but they can in some respects be seen as
complementary. Thus innovative teams can be put together by
combining developers with different innovation styles.

Creativity as meta-thinking: recognising unconscious
pre-dispositions
Though we like to imagine ourselves as independent thinkers, this
is not really the case. In reality our thinking is the product of the
way we interacted as children in our families, of our many
thinking habits and experiences, and of the things people
around us believe in teams, organisations and societies. This
produces a strong tendency to think in conventional and well-
tried patterns. These patterns can be expressed as mindset.
Mindset is ‘a set of assumptions, methods or notations held by
one or more people or groups of people which is so established
that it creates a powerful incentive within these people or groups
to continue to adopt or accept prior behaviours, choices, or
tools’ (Wikipedia). When a particular way of thinking is
unquestioningly adopted by a group of people it is known as
groupthink. Checkout out your own mindset: what is the core
discipline of system development? Is it programming,
development methodology, or business logic? If the answer is
obvious, then you have a mindset. There are various other ways
of describing mindset: the German sociologist Dilthey used the
term ‘Weltanschaung’ to describe an underlying basic view of
the world, whereas his British colleague Giddens used the idea of
structure to describe common rules and procedures adopted by
societies. What makes mindset difficult to deal with and
potentially inhibiting for creativity is that it is always, at least to
start with, unconscious. If you know you have a mindset, then
you can also change it, which means that it is not really a
mindset. However, if you have a way of thinking which you
normally adopt, but is unconscious, how are you supposed to
recognize and change it? Maybe most of the programs you
build have an architecture that resembles model-view-controller,
without you even noticing it. You would need someone to point
this out in order to be aware of it, and come up with an
alternative strategy. Even so, you might be quite resistant to
adopting a different architecture – arguing, quite reasonably,

88

that it had always produced good results in the past. You might
even be quite nervous at launching out in an unknown direction.
There are many techniques for exposing and working with
mindsets (for example Mitroff’s ‘assumption surfacing, and
dialectical techniques), however one of the most sustained
insights into how to recognise mindset and develop creative
alternatives (also known as thinking out-of the-box) is the lateral
thinking of Edward de Bono. Lateral thinking is contrasted with
vertical thinking – orthodox, logical, unimaginative, but effective
in many situations. A serious of examples, games and techniques
are used to break up the normal pattern of vertical thinking
(which is dependent on mindset), and introduce another style
which is inventive, playful and discontinuous. The intention is to
go beyond conventional linear logical thinking and generally-
held assumptions.

In a development team situation it is important to be able to
challenge the mindset of others, provoking uncharacteristic
reactions. It’s neither necessary nor advisable to continue with
waterfall development or adding piecemeal code to business
systems written in COBOL simply because that’s the way it has
always been done in the place you work in. However one of the
marks of a really creative developer is the ability to recognise
and change their own mindset, if it is challenged.

Creativity as whole-brain thinking: beyond rationality
Since Freud we have understood that our conscious thinking
patterns, the rational voice that we hear in our head, is only part
of consciousness, and possibly a rather insignificant part. Our
thinking patterns can be understood as the conscious (what we
are aware of and have access to), the pre-conscious (what we
are unaware of but can get access to), and the unconscious
(what we cannot be aware of). Our education as programmers
and system developers is heavily analytic and concentrates
rather heavily on developing our conscious rationality. Brain
researchers have demonstrated that the two hemispheres of the
brain have rather different functions. In very general terms, the
left side deals with the rational, whereas the right side deals with
the intuitive.

89

LEFT BRAIN
uses logic
detail oriented
facts rule
words and language
present and past
math and science
can comprehend
knowing
acknowledges
order/pattern
perception
knows object name
reality based
forms strategies
practical
safe

RIGHT BRAIN
uses feeling
"big picture" oriented
imagination rules
symbols and images
present and future
philosophy & religion
can "get it" (i.e.
meaning)
believes
appreciates
spatial perception
knows object function
fantasy based
presents possibilities
impetuous
risk taking

Again our training is very heavily oriented towards developing
the left brain function; however it’s easy to conclude that many
of the abilities and thinking styles we have been considering are
really right brain functions. Maybe to develop our creative
abilities as system developers, we also have to focus on right
brain functions.

Creativity as a state of mind
Most people are familiar with the kind of intense concentration
experienced when involved in a computer game. Others
experience it when playing chess, or on the football field. Many
also experience it when absorbed in their work. Csiksentmihalyi
became interested in this state of mind and gave it a name:
flow. Someone in this mental state experiences most of the
following, (according to Csiksentmihalyi)

• clear goals at every stage
• immediate feedback
• challenge/skill balance
• action and awareness merged
• distractions excluded from consciousness
• no worry of failure

90

• self-consciousness absent
• time distortion
• activity becomes autotelic (an end in itself)

Thus a teenager absorbed in World of Warcraft is perhaps
following a particular quest (goal), controlling their avatar on the
screen with rapid finger movements in battles with others
(feedback) working towards achieving the next skill level which is
within their reach (challenge, success certainty), completely lost
in the game to the complete exclusion of everything around
them (awareness, distractions). The distinction between the
player and the avatar is blurred (absent self consciousness), the
game may be played for hours (or days), but the player is
unaware of time, and the only purpose in playing is to reach a
higher level in the game. Playing a computer game is normally
understood as a leisure activity (and can also be addictive and
harmful), but Csiksentmihalyi also associates the state of flow with
creativity. Most programmers will also recognise that periods of
their work are spent in flow, and this usually indicates that the
work is going unusually well, and they are achieving a great
deal. Those periods outside the state of flow, where nothing will
work and one stares at a blank screen without being able to get
ideas expressed in code, are correspondingly frustrating and
unproductive. Most other development work can also induce
the flow state; one can be just as engaged in developing an
entity relationship model, or sitting with a user developing a use
case. It’s easy to see that these periods are unusually
productive, but the reason that Csiksentmihalyi associates flow
with creativity, is that one can observe creative people (for
example leading artists and scientists) working in the state of flow
for exceptionally long periods. Flow is an easily understood
measure of creativity – when you simply have to get the screen
you are working on finished and you look at the time and you
missed lunch, then it’s probable that you were in flow, and also
likely that you were unusually productive, and unusually creative.

One potentially negative consequence: flow is essentially
personal, whereas software development is team work. A team
member who is solely focused on his own project, and not
communicating with other members of the team risks producing
a lot of work which is mis-directed in terms of the overall goals of
the project. The result may be code design which cannot be
integrated with other parts of the system, divergent
interpretations of requirements and use-cases, presentation

91

screens which do not match the underlying database and a host
of other problematic consequences.

Creativity as a relationship between the developer
and the outside world

In this section, we will
introduce the idea that
even though we are here
focused on the individual
developer, we cannot
really divorce this
individual from the systems
of people and ideas that
they are engulfed by.

Csiksentmihalyi
demonstrates this with his
systems model, where he

relates the individual, with their thinking process and creative
attributes to two other important considerations. The first is
domain: a set of symbolic rules and procedures which make up
the creative field of enquiry. In system development the domain
is the world of relational algebra, agile methods, process re-
engineering, nondeterministic polynomials and Bayesian
networks - the system of thinking that constitutes the professional
and research worlds of system development. It is against this
extensive system of thinking, that we determine whether a
contribution is novel - whether it constitutes an advance in
science or practice. The second consideration is field: the
people who act as gatekeepers to that domain. Here we must
understand that the system of ideas is operated by a community
– these are people who work with the domain. Without the
community who work with the system of ideas, the ideas
themselves are relatively meaningless. The field will determine
whether a thinking act is creative, by evaluating it against the
current domain. Meaningful advances will then be incorporated
in the domain.

Csiksentmihalyi provides us with a useful reminder that it is rather
pointless to speak of personal creativity – it is only set in relation to
field and domain that creativity acquires validity and meaning.

92

Creativity as a universal mental skill to be enhanced
Having understood creativity as a positive and productive force,
which is not determined in our character or personality (though it
may be suppressed through our experiential development) we
should regard it as a universal mental skill to be encouraged and
enhanced. We can recognise and focus on development
project situations where we have unusual productive energy and
allow our curiosity space to unfold. We can value and cultivate
flow, foster divergent thinking and have the courage to
communicate our ideas even when they seem unconventional.
We can listen to the ideas of others without dismissing them if
they seem strange at first hearing. We can challenge those
practices which seem determined by custom rather than
effectiveness. We can experiment, and learn not to think of
ourselves as failures when something goes wrong or we make
mistakes. We can strengthen our knowledge in the domains that
we choose and become experts, and we can learn to use our
reflective skills to include many facets of our experience.

Work-style heuristic 5 - develop your personal
creativity
This chapter investigated eight different perspectives on personal
creativity in software development. We studied creativity in the
software development process as:

• the developer’s mental process: recognising and
exploiting discovery points

• a set of personal development competences concerned
with both solving problems and recognising opportunities

• a style of thinking associated with different strengths in
individual’s development personalities

• meta-thinking: recognising predispositions and
tendencies in one’s own (and others’) thinking and
coming beyond them

• whole-brain thinking: beyond rationality
• a state of mind: the way the developer’s mind is disposed

when being creative (flow)
• a relationship between the individual developer and

communities of people and ideas (domain, field)
• a universal mental skill to be enhanced

93

Some developers who want to improve their innovation potential
will be able to make progress through changing their mental
frame of reference and observing their own practice in
relationship to these ideas. Others will want some more concrete
help and they are referred to the chapter on tools and
techniques.

Sources and further reading
COUGER, J. D. (1990) Ensuring Creative Approaches in
Information System Design. Managerial and Decision Economics,
11, 281-25.

COUGER, J. D. (1997) Creativity/Innovation in Information Systems
Organizations. System Sciences, 1997, Proceedings of the Thirtieth
Hawaii International Conference on, 3.

COUGER, J. D. (1997) Results of a trans-discipline research
structure for study of creativity/innovation in IS. System Sciences,
1997, Proceedings of the Thirtieth Hawaii International
Conference on, 3.

CSIKSZENTMIHALYI, M. (1997) Creativity: flow and the psychology
of discovery and invention, Harper Perennial.

DE BONO, E. (1971) The Use of Lateral Thinking: A Textbook of
Creativity, Penguin.

MILLER, W. C., COUGER, J. D. & HIGGINS, L. F. (1993) Comparing
innovation styles profile of IS personnel to other occupations.

SIMON, H. A. (1982) Models of Bounded Rationality: Behavioural
Economics and Business Organisation, Cambridge, Mass., The MIT
Press.

WALLAS, G. (1926) The art of thought, J. Cape.

WALZ, D. B. & WYNECOOP, J. (1994) Creativity and Software
Design - is formal training helping or hurting? Systems, Man, and
Cybernetics, 1994. 'Humans, Information and Technology'., 1994
IEEE International Conference

94

6. Be a super-team-worker: the innovative
software team

Software is not normally built by individuals (though individuals
sometimes get credited with breakthroughs) but in teams. When
we want to understand how innovative teams function, then we
need to turn primarily to the literatures of management science.
An innovative software team is, by definition, not dysfunctional –
this is helpful to us because we know quite a lot about the
different ways in which teams go wrong. However a functional,
well-performing team is not necessarily innovative – it can
function well in performing relatively routine tasks such as
maintaining a banking system.

In trying to understand how an innovative team works, we will
need to go beyond understanding how a dysfunctional team

becomes functional. We
can examine the
psychological, managerial
and physical environment
of the team, the
composition of the team,
the team processes (the
way the team members
communicate and work
together), how the team
learns, how it integrates the
different expertise of its
members, how it develops a

common understanding or overview of the project it is working
on, how it accommodates divergent thinking and the social
patterns and interactions of the team members.

If the image of a software team conjures up an image of 7-10
developers working intensively at their desks in an open plan
office, then it’s worth remembering that software teams can be
quite diverse in nature. This is a co-located small project team,
but teams can be larger (or smaller) and can be geographically
distributed. Teams can be composed only of core members, or
may have many associated experts playing tangential roles who
come in to resolve specialised problems. They may interact with
their external environment (customers for example) or be locked
away from it. Distributed teams work together with a number of
communication tools: conference calls, shared programming

95

screens, net whiteboards, file sharing systems and elaborate
collaborative work tools (CSCW) or shared programming
environments and version control tools such as Subversion. Work
can be synchronous with frequent IM communication, or
asynchronous through file sharing. Thus there can be frequent
face-to-face interaction, or none at all - as in some open source
projects. SourceForge provides an internet working environment
for open source projects which supports many forms of
interaction and tools for communities working on code bases.
Teams can have an all-powerful project manager or be self-
organising. Some projects document every comma in their
code, and some let their application speak for itself. Most
software development teams are commercial, and eventually
have to earn a profit for their companies, but others work in
universities where they are funded by the state but have to
publish their research. Still others work in open source project
where the motivation has more to do with belonging to a
community. This is a varied picture of teams and teamwork, but
there is little research to suggest which of these various factors
make a team especially innovative. We will simply assume that
most types of team and most types of teamwork can promote
innovation.

We will first take a look at what is known about negative factors
in team operation, in the form of creativity barriers and group
dysfunction. Then we will move on to more positive approaches
to supporting the innovation potential of software teams:

• software team roles
• communicative interactions
• the accommodation of divergent thinking
• team learning
• overview (common purpose)
• expertise integration
• social practice patterns
• environmental scanning.

Creative/innovative work environments: barriers
Every development team operates in a work environment which
is mainly beyond its own control. This environment is made up of
standardised work practices, resource constraints, physical
surroundings, management practice, and psychological and
cultural factors to do with the way people normally interact with

96

each other and the cultural norms operating in the work
situation. Research shows that certain environmental conditions
function as barriers to creativity – that is, they inhibit innovation in
the workplace. It’s also possibly, through instruments such as the
Work Environment Inventory, to investigate work conditions and
isolate factors for improvement. The main creativity barriers are:

• Workload/time pressure – excessive pressure on teams
and individuals provokes stress and reduces scope for
reflection and experimentation, effectively ruling out
exploring, modifying and experimenting (see Miller’s
innovation styles). Thus developers running between
several projects, behind their delivery dates and running
out of development hours to finish their project are in
much need of creative thinking, but badly placed to
deliver it.

• Stress – has many psychological and physiological
consequences (particularly when experienced over
longer periods) which reduce developers’ productivity. It
is sometimes accompanied by a misleading ‘high’ of
excitement and drive, which leads the developer to
mistakenly believe that they are performing well. Team
interactions normally become poorer when the group is
stressed. Creativity is associated with heightened
performance, not lowered performance.

• Resource shortage – forces development teams into well-
known practices and constrains experimentation and
exploration.

• Rigid work practices – standardised and enforced work
practices, such as strict protocols for requirements
specifications, documentation requirements, required
adherence to a particular development method, are
thought to inhibit creativity. This is because they
encourage algorithmic (follow a set of instructions)
thinking rather than heuristic thinking. These techniques
can, of course be productive in more routine situations.

• Bureaucracy – is often concerned with enforcing
adherence to rigid work practices. Developers over-
document their work processes primarily so that their

97

managers can be certain that the correct processes
have been followed.

• Inappropriate evaluation systems – many software firms
have evaluation procedures which do not really reward
creativity – developers are promoted or rewarded
because they get on well with the managers, because
they are reliable, or because they have been with the
company for many years. Innovation skills can be
perceived as dangerous or provocative, especially where
they are associated with divergent thinking or
challenging prevailing mindsets.

• Reward systems that penalise mistakes – innovative
projects will inevitably fail from time to time, because
innovation requires a certain acceptance of risk (new
applications with untested markets, new programming
techniques which may prove troublesome as developers
learn them, a venture into a new technology). If the
failure means, in a particular software firm, that the
project manager will never be put in charge of another
project, then this will act as a strong disincentive to
innovation.

• Routine work – too much is dispiriting for creative
individuals and teams.

• Poor project management - authoritarian project
management styles may work in routine situations of
moderate complexity, but they discourage many of the
characteristics of innovative team work, such as dialogue
and evolving shared purpose.

The natural conclusion is that an innovative software team needs
some basic external conditions to be in place in order to be
more than simply functional. If we reverse the ‘barrier’ way of
thinking we can begin to envision creative work environments
enhancers: freedom, empowerment, challenging work, sufficient
resources, supervisory encouragement, workgroup support,
organisational encouragement, professional recognition, good
teamwork, harmony, cohesiveness, shared vision, team learning,
creativity training, mentors, role models, networking, multi-
disciplinary teamwork, creative tension.

98

Group dysfunction
Management researchers also know quite a lot about the signs
for, and causes of dysfunctional group interaction and poor
teamwork. Some major dysfunctions are associated with

• Destructive dominance – a group member or members
exhibiting unusually high influence over other team
members, thus preventing other team members from
expressing their own ideas or getting them adopted, and
steering the project in sub-optimal directions.

• Freeloading – the reverse: team members contributing
little or nothing. Innovative teams are performing
exceptionally well, which means that they need to
maximise the contributions of all the members.

• Conformance – the emergence of group norms (‘we
need a database solution,’ ‘it’s impossible to avoid a
significant degree of error in calculating geo-
coordinates’) and a consequent unwillingness to speak
up with a better solution.

• Conflict avoidance – unwillingness to challenge ideas
due to fear of unpleasant personal confrontations –
sometimes resulting in group decisions which are contrary
to the desires of a majority of members.

• Destructive conflict – its reverse: prolonged unresolved
personal antagonism leading to an unproductive
psychological climate, and posturing behaviour more
rooted in the underlying conflict than the progress of the
work of the team.

• Anchoring - digression from the main goals of the project
in response to the tangential interests of powerful group
members.

• Search behaviour - premature commitment to under-
researched solutions primarily due to anxiety about
progress in the project.

• Groupthink – the group equivalent of mindset, where a
set of ideas become so powerfully entrenched that no
one is able to think of alternative solutions. This kills
divergent thinking, an important component of
innovation.

99

Some or all these phenomena are seen in most dysfunctional
teams. An innovative team is a team with super-function, where
there is not normally room for these kinds of problem. As we will
see, the functioning of the super-team will need to enable some
relatively difficult forms of interaction, including divergent
thinking, expertise integration, overview development and
revision, and relatively unusual social patterns.

Having understood something of creativity barriers and group
dysfunction we turn to some positive features of teamwork that
can promote innovation.

Innovative team roles:
Every software project manager wants to get certain developers
on their team. The reasons are sometimes a mixture of
practicality and expedience. This developer is good with
network configuration, this one has a wide experience with .asp,
a third can be relied on to work steadily and not complain, a
fourth is good friends with a senior manager that should be
impressed. Innovation is expertise-based, so innovative teams
are usually composed of people are very good at what they do.
However the right blend of technical expertise dependents on
the particular project, so here we will focus more on innovation
roles. Team roles are a way of thinking about what team
members contribute to their team and how these contributions
can produce a synergy that can make the team much more
effective and productive than its members could be if working
alone. Classical team roles include:

• idea generators – those who come up with many varied
ideas and problem solutions

• entrepreneur/product champion – the visionary who can
hold the eventual goal in focus

• project manager/leader – the person who takes charge
and organizes the work of the team

• gatekeepers/boundary communicators – those who
communicate with people outside the project

• sponsor/coach – senior figures providing organizational
legitimacy and encouragement.

Meridith Belbin, working in the field of management psychology
contributed the best scientifically underpinned taxonomy of
team roles:

100

• plant - creative, unorthodox and a generator of ideas,
often the divergent thinker.

• resource investigator – the vigorous pursuer of contacts
and opportunities, focused outside the team, maker of
possibilities, networker.

• coordinator - confident, stable and mature, task
delegator, decision maker.

• shaper - task-focused leader with drive and energy – the
winner type, committed to achieving goals and
channelling the team members towards these goals.

• monitor evaluator - fair and logical observer and judge,
analytical thinker and rational evaluator of options.

• team worker - good listeners and diplomats, talented at
smoothing over conflicts and helping parties understand
each other without becoming confrontational.

• implementer – converter of ideas into positive action,
efficient and self-disciplined, can be relied on to deliver
on time.

• completer finisher - the perfectionist who goes the extra
mile to make sure everything is delivered on time and
works perfectly.

• specialist – expertise, concentration, ability, and skill in a
particular field.

These roles are presented in positive terms, but Belbin recognizes
that all roles also have a negative side when carried to excess, or
simply placed in the wrong situation. The plant can continue to
supply unorthodox ideas when it is time to implement what has
been decided, the networker may introduce all kinds of
externalities and lack of focus, the coordinator can be perceived
as manipulative and work shy, and so on.

James Coplien adopted the idea of roles in his study of social
process in software projects, describing repeating types of figures
with a direct influence on the project – for example: patron, solo
virtuoso, gatekeeper, matron (social supporter), mercenary
analyst (someone brought in to relieve the team of drudge work
like user documentation), surrogate customer, legend, wise fool,
peace maker, sacrificial lamb, guru, producer, supporter,
deadbeat.

101

It would have been helpful if one of these authorities had
provided a recipe for how to compose a software team that was
guaranteed to be innovative. Unfortunately this has not been
the focus of their studies, and in any case it is almost certain that
no such formula exists. Nevertheless it is easy to see that a team
composed of, producers, implementers, team workers and
completer/finishers will get through a lot of productive work, but
will only be innovative in one particular situation, that is when the
specification for the innovative software product is delivered to
them from outside the team. A team composed of plants and
shapers will have originality, drive and ambition – but no-one to
deliver the solid work necessary for making progress. Innovative
teams will have different compositions in different circumstances,
but it’s an interesting exercise to take your current project,
analyze the role distribution, and imagine an optimally creative
composition of roles.

The idea of role is incorporated in modern agile methods. Here,
instead of analyzing roles of team members based on their
personality types, the authors ask developers to consciously
adopt roles, with the understanding of what the role entails. In
Beck’s eXtreme Programming, the roles of coach, programmer,
tester, tracker, consultant and big boss are specified, with some
advice on how they should be filled in an effective team. A
special role is allotted to the on-site customer – that of simplifying
the complexity of relationships with outside stakeholders and
users. SCRUM allots the roles of product owner (prioritizing the
product backlog), scrum master (a developer with special
responsibilities for conducting sprint meetings and protecting the
team from outside interference) and chicken (those who may
observe but not interfere). These role allotments are concerned
with making the development team more effective, but in
Aaen’s Essence the idea is further developed to focus on
creativity. Here roles are designed to ensure that the team
develops the necessary creative tensions for innovation:

“Team members have roles defining their characters. Each role
has a set of ideals or values providing a clear raison d’être to the
role. The Challenger is the customer and has all the
responsibilities of an on-site customer, yet should pose project
requirements in the more open form of challenges. The
Responder is the developer employing technical competence to
deliver ambitious responses. These two roles engage in a
dialogue where solutions are developed by contrasting
application area needs and desires with technical opportunity.

102

The Anchor serves to keep the team absorbed and focused on
delivering exciting solutions. The last role is the Child; this role is
temporary as anyone on the team can take this role temporarily
at any given time. The Child may raise any idea or issue – even
when contrary to decisions made earlier by the team. This role is
named after the child in Hans Christian Andersen’s The Emperor’s
New Clothes who said ‘but he hasn’t got anything on’ - and
thereby revealed the emperor’s folly.” AAEN, I. (2008) Essence:
facilitating software innovation. European Journal of Information
Systems, 17, 543-553.

Innovation team interaction
Dysfunctional groups can be said to have dysfunctional group
interaction, and much of improving team function is concerned
with improving interactions. Interaction comes in three main
forms – it can be free interaction, facilitated interaction, or be
determined by technique. Most information system
development teams use free interaction (without really
considering the choices). This means that the group interactions
are left to evolve by themselves. Most experienced developers
are quite conscious of how their team is functioning, and have
various responses (derived through experience) to the periodic
interaction threats which are a natural part of the ups and downs
of every project. Often the responses are intuitive, and
sometimes unconscious – thus an old hand will smoothly interrupt
someone who is being much too pedantic about a small system
feature, and make sure the discussion moves on, without anyone
really noticing what is going on. Sometimes group interactions
move beyond commonplace ups and downs and become
dysfunctional. One response to this situation is to employ a
facilitator – someone who is experienced at group interaction,
and just as important, is external to the team, so that they are not
bound up in the internal dynamics of the team’s interactions.
Other reasons for employing a facilitator can be to improve the
performance of the team, or to manage temporary teams with
well-defined tasks, such as a user focus group. Here the
facilitator comes with a preordained understanding of the task
(e.g. usability testing an interface) and the process for solving the
task, and steers the group though the session. The third way to
influence group interaction is to use a technique designed for
the purpose. An example is nominal group technique. NGT
consists of five steps

103

1. participants independently and silently generate a list of
ideas

2. the facilitator records one idea at a time going round the
group

3. group members discuss each idea for clarification only,
without considering its merit

4. participants independently rate and rank the ideas
5. the group prioritizes the suggestions by voting

This process effectively removes much of the typical dysfunction
described earlier (destructive dominance, freeloading, etc.).
However it can easily be experienced as artificial. Duggan
experimented with combining this technique with Joint
Application Development, with good results.

Many of the techniques used in agile methods are focused on
achieving good group interactions – often those that are based
on some forms of mutual respect, combined with genuine
commitment to the work of the team. Thus a stand-up meeting
in SCRUM is designed to ensure daily communication of progress
and objectives, and to generate commitment to achieving the
day’s work. There is eye contact between the team members,
and the scrum master is the meeting facilitator, not the project
manager delegating tasks. The meeting form encourages a
particular type of group interaction. Once more, however, there
is no recipe or blueprint for group interactions that result in
innovation. Nevertheless, focus on interaction is vital for
innovative software teams, which must combine effectiveness
with a wider variety of divergent thinking, challenge, creative
tension and uncertainty than other development groups. Group
processes must enable both a wide spectrum of idea
generation, and testing of mental models, with the evolution of
common purpose and a high degree of efficiency in
implementation.

Team learning and innovation
A team with good communicative interaction is in a position to
learn effectively. This is important
because there is typically much
to learn in a development
project. Projects differ, and it is
impossible to characterise all the
things that the team must learn,

104

but a starting point could be to consider three learning domains.

1. Project domain: all those things that are concerned with
the organisation and management of the development
project, its process, structuring, management, tool
support, financing, project members and customers.

2. Technology domain: the hardware, software
environment, programming languages, design
techniques, architectures and algorithms.

3. Use domain: the understanding of the application area
that the software is intended to be used in. The habits
and work (or entertainment) patterns of the users, their
way of interacting, the purpose and function of the
software product in its use context.

It could be noted that when innovation is the focus, the learning
curve may be relatively
heads-up – with an eye
on external competitors,
the trends and trajectories
of technology evolution,
and the use patterns of
the future. Technologies

may be leading edge – normally involving a very steep learning
curve for project members. Thus an innovative development
team is normally learning very fast, and very effectively. This
allows the project to move quickly, to cover much ground, and
to stay in front of other competitor teams working on similar
products.

The primary mode of learning in a team is through internal
communication, but discussion is not learning in itself. The
management theorist Peter Senge points out the difference
between discussion and dialogue. Discussion may involve much
re-stating of individual positions, various forms of power struggle
and negotiation, defensive routines where participants defend
their own ideas where they feel them to be under attack, lack of
focus, tangential episodes and many other important
interactions, which however do not constitute team learning. If
the participants’ underlying mental models, their ways of
thinking, their view of their own private expertise areas and their
underlying attitudes to the project do not change, then team
learning is not taking place. If this is difficult to understand,

105

consider the case of three politicians from different political
parties publically discussing an issue. Chances are that there is
interaction, but no move towards a common position. The
participants simply continue to explain their own positions in new
and different ways. The basis of team learning, Senge points out,
is not discussion but dialogue. In dialogue, group members
agree to suspend their individual positions and assumptions and
to listen openly to the ideas of others - accepting those ideas as
equally valid, but different. The collective mind of the team
moves forward and learns through the generation of common
understandings and purpose. He specifies three conditions
which must apply for dialogue to evolve.

• Participants must suspend their assumptions – particularly
the instant unreasoned judgments that they make
because of their underlying assumptions.

• Participants must regard each other as colleagues – a
special relationship where the other has an intrinsic right
to their opinions and arguments.

• There must be a facilitator who stays outside the content
of the dialogue, but instead holds the context in play –
particularly the first two conditions.

Many dialogues can be observed in system development
practice. Two developers argue out their testing strategy with
JUnit. They have different, but valid strategies. An experienced
developer is coding a few feet away at her desk. She doesn’t
participate much, but makes it known by her body language
that she is following the conversation – she facilitates. The tone
of the conversation is constructive, the arguments well-reasoned
and technical in nature. Eventually the developers agree, and
more importantly, both commit to the testing strategy and the
experienced colleague turns back to her screen. The team has
progressed; the testing strategy decided, communicated and
bought in to.

The ability of a team to learn effectively, and fast, gives it a
particular characteristic which is helpful in most innovation
situations – agility. Agility is the ability to respond productively to
changing situations and circumstances, by changing the
direction of (parts of) the project. Innovation projects are likely to
throw up many difficulties – leading edge technologies which do
not work as expected, unstable, programming environments,
user scenarios which are unexplored and therefore subject to

106

sudden alteration. Teams which cannot respond to these
problems (my geo-mapping program worked fine on our PC
mobile simulators, but crashes on my Nokia phone) cannot make
much progress. Agile teams are typically able to respond
constructively to many different types of changes in the three
learning domains.

Accommodation of divergent thinking
Just as Darwinian evolution is dependent on genetic divergence
(small mistakes in the transferral of genetic information in the
reproduction of the species), creativity is dependent on
divergent thinking. If we all think alike, then innovation is not
possible. Creative teams therefore have a special responsibility
in the way they handle divergent thinking. A team which is not
open to divergent thinking, at least in certain phases of its work, is
not likely to learn effectively, integrate its expertise or respond to
challenges well. However ideas are not good ideas simply
because they are new – in fact most new ideas are not very
productive. Some are dangerous. The suggestion that the social
networking web system that the team is building should really be
a mobile application might be the stroke of genius which will
earn the company a lot of money, or a red herring which will
derail the project and lead to a catastrophic failure. If the team
is closed to the idea then it cannot be adopted anyway – so we
will never know. If the team is open to creative ideas, then
assumptions must be suspended and a proper dialogue set up to
evaluate the merit of the idea – a process which could take
hours, days or weeks. If the team produces many divergent
ideas, and they all evaluated in this way, then actual progress in
designing and building anything will rapidly come to a halt.
Many divergent ideas are usually more helpful in the earlier idea
generation phases, than two weeks before the deadline, with an
expectant customer waiting in the wings. Creative teams
develop their own ways of handling these dilemmas. A team
member with many divergent ideas (a plant) may be taken more
seriously at the beginning of the project. A deadline may
suppress all new ideas for a short period of time. At other times
there may be long discussion of apparently wild ideas. There
may be a sub-group who are prepared to listen and vet ideas
before they reach everyone.

107

Expertise integration
Teams are made up of developers with many different kinds of
expertise. Some come with particular competences in
databases, java, or web engineering. Others are experienced
communicators or project managers. The company’s senior
architect may pass by to discuss basic design issues, and the
company’s lawyers may drop in to discuss patent issues.
Developers often undervalue a totally different kind of expertise
which is displayed by their customers and users – they are
normally the experts in the use domain, not the developers. The
creativity of a team is associated with the integration of
expertise. This is not simply knowledge transfer between
individuals. A programmer working on the engine of a computer
game may have many conversations with the graphic designers.
The graphic design influences how the engine should be
configured, and what the engine can do influences the way the
game will eventually look and react for its users. Expertise
integration means that the different skills of designer and
programmer are integrated at the team level – so that the team
learning of the project is re-focused. Integration of expertise,
such that team members can meaningfully interact with
colleagues with different specialities, increases the range of
design possibilities and solutions that are available for discussion.
It increases social relational capital – the trust and interaction
quality of the team. A team which is able to draw on diverse
forms of expertise, and is also able to integrate and absorb this
diversity is likely to be highly creative.

Overview: macro + micro integration
Creativity in a development team is also associated with
overview. A management theorist like Senge might prefer to call
this common purpose. Software development is one of the most
complex activities known to humanity, and there are enormously
many details, starting with hundreds, thousands, or millions of lines
of code. A visionary innovator can define a software product at
a high level – a three dimensional operating system interface, for
instance – but many details must be in place remain before it
can work. A team needs to work in a common direction –to be
aligned – to be really productive. This means that the whole
team has understood and communicated the more general
directions in which everyone is moving – overview. Without this
overview (itself a form of team learning), individuals may be
productive in their own right, but may work in their own

108

directions, with different understandings of use cases (for
example), a different internalisation of an underlying database
model, or functionality which duplicates that of a team
colleague. Overview can be difficult enough to create in a
normal development situation – and a conventional project
leader might spend a lot of their time working with this, but the
problem is exacerbated in innovation work. There are more
unknowns, less routine to fall back on, vaguer ideas about
outcomes, and difficulties with unresponsive technologies. There
are more challenges to the direction of the project, which the
team must respond to in an agile manner by altering objectives
and practices. This means that yesterday’s overview is likely
already to be out of date, and in need of repair. Thus innovative
software teamwork combines both a greater need to create
viable overview, with a greater difficulty in achieving it.
Sometimes the visionary in the team is capable of maintained
direction. More often there are too many details and subsidiary
expertise involved, and the group must have tools and
techniques and the will to constantly improve their overview.
Simple tools such as mind mapping may be helpful. However
purpose-built innovation facilities, like the Software Innovation
Research Laboratory at Aalborg University, often have built-in
tools for helping with overview. SIRL has four large interactive
screens on its walls, which are normally used to keep four major
aspects of the project in play at the same time. This allows the
team to focus together on a more inclusive version of their
project.

Innovative teamwork patterns
Coplien extended the idea of software design patterns to also
cover the social (work) practices of the software teams. He
started with the idea that productive teams have habits of
working (practices) which are successful over a range of
projects. He then researched these patterns in development
companies using an appropriate research method – social
network analysis.

There are really too many of these patterns to discuss them at
length, but Coplien’s own identification of the most important
(top ten) practices is in the box on the next page. In common
with much good research into system development, the object
of the research is to identify good practice rather than
innovation potential. However we can extend his basic idea to
suggest that innovative software teams have particular work

109

practices which encourage creativity. We can also note some
similarities with other features of teamwork discussed in this
chapter. Unity of purpose and architect controls product
correlate with overview, except for the idea that the project
leader bears the sole responsibility for developing it. The
customer focus reflects the need to learner about the use
domain (amongst other things). Domain expertise is discussed
under the heading of expertise integration. In the absence of
secure knowledge about which social patterns or work practices
promote effective innovation, we must be meticulous in
observing our own experience, in order to learn.

110

Coplien’s top ten software practices
unity of purpose - ‘the leader of the team must instill a

common vision and purpose in all members of the
team.’

engage customers – ‘it’s important that the development
organization ensures and maintains customer
satisfaction by encouraging communication
between customers and key development
organization roles – closely couple the customer
role with the developer and architect roles’

domain expertise in roles – ‘hire domain experts with proven
track records, and staff the project with the
expertise embodied in their roles’

architect controls product – ‘create an architect role as an
embodiment of the principles that define an
architectural style for the project and of the broad
domain experience that legitimizes such a style’

distribute work evenly – avoid concentration of work on a few
dependable producer types

function owner and component owner – ‘ensure that every
function and every component has an owner’

mercenary analyst – ‘hire a technical writer who is proficient in
the necessary domains but who does not have a
stake in the design itself’ avoid drudge work and
documentation

architect also implements – ‘beyond advising and
communicating with developers, an architect
should also participate in implementation

firewalls – ‘create a manager role that shields other
development personnel from interaction with
external roles’

developer controls process – ‘make the developer the focal
point of process information’

Environmental scanning
Many software development teams are quite internally focused.
The many intrusions and distractions that interfere with the flow of

111

development work, and the (experienced as) noise which can
come from managers and customers, quite apart from resource
shortages and pressing deadlines, cause developers to tend to
put their heads down, and to focus on producing code that
works and a solution that can be delivered more or less on time.
This is a very natural tendency and in many situations desirable
practice, but is less likely to promote innovation. Innovative
teams are usually intensely aware of rival products, technology
departments, new market opportunities, leading edge scientific
developments, practice developments in their specialist fields,
and a variety of other environmental factors. Environment here
refers to everything which is not internal to the development
project; thus environmental scanning is the process of collecting
relevant information from outside. As discussed in chapter 2,
technology innovation is seldom conducted in isolation. The
popular image of the inventor with the brilliant idea which
immediately revolutionises a field is somewhat misleading.
Technology innovation takes place in waves, on the backbone
of developing infrastructures, amongst communities of experts in
relation to technology trajectories, in specific innovation time
windows. These factors mean that innovative software teams
take a ‘heads-up’ position – extremely alert to what is happening
in their environment.

Work-style heuristic 6 - be a super-team-worker
We have discussed a number of factors which contribute to
innovative software teamwork. We can focus an understanding
team dysfunction and barriers to creativity in order to repair and
remove. We can understand that innovative teams are likely to
display

• good understanding and exploitation of roles, especially
those which promote creativity

• highly functional communicative interactions, including
accommodation of divergent thinking

• high levels of team learning leading to flexible response
to challenges (agility)

• good shared understanding of common purpose
(overview) even in the situation of rapid change

• constructive software practice patterns – that is
productive work practices

• diverse and deep expertise, well integrated

112

• intense awareness of their environment

Here are some defining questions to ask of your software team:

• which people do you want in your innovative team?
• which roles should be filled in an innovative team

process?
• how structured should the team process be (tools and

techniques versus free interaction)?
• what is the creativity environment for a your team and

how can you improve it?
• what are the innovative work habits (patterns) of your

teams?
• how does the team promote team learning and

dialogue?
• how does the team develop a shared purpose and

overview?
• what kind of automated tool support does an innovative

team need?
• what learning do you need from outside the project and

when do you need it?
• how do you know when the team is working innovatively?

When you have satisfactory answers to most of these questions,
then it is possible that you have an innovative team, and that
you are a super-team-worker.

Sources and further reading
BECK, K. (2000) Extreme Programming Explained: Embracing
Change, Boston, Addison Wesley.

BELBIN, M. (1981) Management Teams, London, Heinemann.

COPLIEN, J. O. & HARRISON, N. B. (2005) Organizational Patterns
of Agile Software Development, Pearson Prentice Hall.

COUGER, J. D. (1996) Press: Measurement of the Climate for
Creativity in IS Organizations. Creativity and Innovation
Management, 5, 273-279.

DUGGAN, E. W. (2003) Generating Systems Requirements With
Facilitated Group Techniques. Human-Computer Interaction, 18,
373-394.

DUGGAN, E. W. & THACHENKARY, C. S. (2004) Integrating nominal
group technique and joint application development for

113

improved systems requirements determination. Information &
Management, 41, 399-411.

JORDAN, P. W., KELLER, K. S., TUCKER, R. W. & VOGEL, D. (1989)
Software storming: combining rapid prototyping and knowledge
engineering. Computer, 22, 39-48.

LOBERT, B. M. & DOLOGITE, D. G. (1994) Measuring creativity of
information system ideas: an exploratory investigation. System
Sciences, 1994. Vol.IV: Information Systems: Collaboration
Technology Organizational Systems and Technology,
Proceedings of the Twenty-Seventh Hawaii International
Conference Hawaii.

LYYTINEN, K. & ROSE, G. M. (2006) Information system
development agility as organizational learning. European Journal
of Information Systems, 15, 183-199.

SAMPLER, J. L. & GALLETTA, D. F. (1991) Individual and
organizational changes necessary for the application of
creativity techniques in the development of information systems.
Proceedings of the Twenty-Fourth Annual Hawaii International
Conference on System Sciences. Hawaii.

SENGE, P. M. (1990) The Fifth Discipline, London, Century.
TIWANA, A. & MCLEAN, E. R. (2003) Expertise Integration and
Creativity in Information Systems Development. Journal of
Management Information Systems, 22, 13-43.

AAEN, I. (2008) Essence: facilitating software innovation.
European Journal of Information Systems, 17, 543-553.

114

7. Bring your toolbox: creativity tools and
techniques

In this chapter we investigate the developer’s repertoire – that is
the toolset that a developer has available to help with creativity
and innovation. The thesis will be that an innovative software
developer or team has two basic competences in relation to
toolsets. The first is repertoire – that is knowledge of tools and
techniques which may be used to support various aspects of the
development process, particularly in regard to creativity. The
second is selection – that is the ability to choose the tool or
technique which is productive in the particular development
situation at a particular point in time.

The terms tool and technique are often used interchangeably,
but here we will primarily use ‘tool’ to mean a piece of software,
and ‘technique’ to mean an abstract procedure for doing
something. Every developer has an existing repertoire of tools
and techniques derived from their education and experience
which from time to time can be used in a creative way, or to
improvise a solution to a problem, so here we focus on tools and
techniques for innovation.

Creativity tools
Information system development is heavily automated. It comes
with many software tools which make the task easier – typically
automating drudge work. Software developers don’t function
well without their compilers, translators, programming interfaces,
diagramming and case tools, version control tools, and many
others. There’s a software tool that supports every development
task, from requirements management to test and
implementation, if the developer cares to use them. Access to
the internet has largely replaced volumes of documentation of
the various programming technologies involved. Tools automate
routine work, and structure large quantities of information, but
can also create unnecessary bureaucracy and divert attention
from more important tasks. It follows that the developer working
with innovation will also require tool support, and this section asks
the question: what kind of software tool support can underpin
innovative software projects? The research literature is again too
thin to be really helpful, so the section will end with a proposal for
a toolbox which is a form of summary of the various research
contributions.

115

Characteristics of applications supporting creativity
There is a fair amount of research into applications that support
creativity, where creativity is understood as a generalized
scientific or artistic phenomenon - that is, not particularly
directed at information system development. The tools
described in this literature include automated mind mapping,
argument support tools (for structuring discussion), tools for
enhancing arts (painting and music) experiences, a dialysis
simulation tool (which helps to explore various dialysis scenarios)
a tool for visualizing blood protein chemistry in a three
dimensional graph, and a gearbox design tool. According to
Greene, creativity software tools support:

• (pain free) exploration and experimentation (sandbox
mode)

• engagement with content to promote active learning
and discovery

• search, retrieval and classification
• collaboration
• iteration
• instructive mistakes
• domain-specific actions

He is talking about a wide variety of tools supporting creativity in
many fields (including the arts), but his characterization supports
our emerging picture of a development process which is
engaging, allows space for experimentation and errors and has
a high learning curve. Shneiderman, also speaking generally,
specifies the tasks for such tools:

• searching and
browsing digital
libraries, the web, and
other resources

• visualizing data and
processes to
understand and
discover relationships

• consulting with peers
and mentors for
intellectual and

116

emotional support
• thinking by free associations to make new combinations

of ideas
• exploring solutions—what-if tools and simulation models
• composing artifacts and performances step-by-step
• reviewing and replaying session histories to support

reflection
• disseminating results to gain recognition and add to the

searchable resources

As the list below shows, there are many software tools available
for purchase or download. Many of these tools can support
aspects of a software project (for instance initial idea
generation) but there is little or nothing that is directly intended
for the software developer. The examples given in the literature
are eclectic and the frameworks rather generalized. In addition
there are potentially many aspects of software innovation to be
supported, and many different use situations.

117

If we try to translate these principles into a software context we
could understand that experimentation and exploration often
take the form of trying out different system ideas, where very low
tech prototypes (sketches and paper mock-ups) can be
replaced by digital and code prototypes as ideas shape up.
Often these will serve as the starting point for exchanges of ideas
with users. Developers will be engaged in active discovery and
learning in both the technology and use domains – generating
constructive technical solutions, perhaps with cutting edge or
unfamiliar technologies, and understating their products
innovation potential – in particular its utility for a particular user
community. Developers can spend much research time on the
net: searching code libraries, looking at related open source
projects, understanding the use context, assessing competing
development platforms and environments, and honing their
programming skills. Sometimes this knowledge is recorded or
codified for later use or for dissemination amongst other
developers in a knowledge base, wiki or intranet. Software
development in an innovative context makes heavy demands
on communication and collaboration. Some of this is internal to
the project: expertise exchange, developing common purpose,
design decisions and standards, alterations to the code base,
refactoring. Other aspects are external, involving collaboration
with clients and users: contextual studies, use cases,
requirements, feature list discussions, prototype demonstrations
and so on. Many aspects of this collaboration can be supported
in relatively simple ways; for instance, if your user does not have
time to play the role of on-site customer and be physically
present all the time, then they can at least be available for a
video conference on Skype. Much innovative software
development is relatively iterative – applications are seldom built
perfectly first time in increments; rather they are experimented
with, prototyped, discussed, improved, thrown out, added to,
tested, demonstrated. In addition there is much routine drone
work - 1% inspiration and 99% perspiration, as the cliché has it.
Software tools have the potential to contribute here. A further
role for software tools is for visualisation. Many system analysis
and design techniques are essentially concerned with
visualisation - diagrammatic representations of complex sets of
relations - and are supported by tools like Rational Rose.
Architectural design communicates a unifying structure to a
design and is also often visualised in a diagram.

118

A software support toolbox
As a way of summarizing this debate, and focusing it on software
innovation the following software support toolbox is proposed:

purpose examples

support for escaping
routine work

programming editors, visual editors,
case tools and diagrammers, project
management tools, code
management and versioning tools

sandbox tools prototyping tools, screen painters,
demo makers, animation and slide-
show software, visual RAD tools

knowledge tools search tools, technical problem
solving and coding documentation
sites, knowledge base, wiki,
experience exchange, idea
repository

collaboration tools:
internal (project),
external (customers and
other stakeholders)

co-operation and communication
tools, collaborative writing, social
network support, dialogue support

visualization and
overview support

simple diagrammatic support for
visualizing and agreeing common
purpose in the face of complexity:
mind maps, Microsoft Visio, case tools

creativity technique
support

support for particular creativity
techniques used in the project

The toolbox constitutes a repertoire – an available set of tools
which can be drawn upon. More is not normally better, in the
sense that most tools involve a learning curve, input demands
and some bureaucracy. Most also threaten with goal
displacement – that using the tool will become the goal, rather
than improving innovation performance. Adding Microsoft
Project and Rational Rose to a three month, three man project is
more likely to drown it in documentation than add to its
creativity. Selection – adding the right support for the particular
project - is the key.

119

Creativity techniques
Creativity can be enhanced and there are many techniques
which can be used to stimulate it. It’s not really the purpose of
this chapter to describe these in detail, but some of the best
known are:

• Assumption Surfacing
• Brainstorming
• Card Story Boards
• Causal Mapping
• Crawford Slip Writing
• Dialectical Approaches
• Five Ws and H
• Lateral Thinking
• Mind Mapping
• Nominal Group Technique
• SWOT Analysis
• TRIZ

There are many descriptions of these kinds of techniques at
Wikipedia and other places on the web. The following list is
adapted from the wiki Mycoted provide.

7 Step Model
AIDA
ARIZ
Advantages,

Limitations and
Unique Qualities

Algorithm of
Inventive Problem
Solving

Alternative
Scenarios

Analogies
Anonymous Voting
Assumption Busting
Assumption

Surfacing
Attribute Listing
Backwards

Forwards Planning
Boundary

Examination
Boundary

Relaxation
BrainSketching
Brainstorming
Brainwriting
Browsing
Brutethink
Bug Listing
BulletProofing
Bunches of

Bananas
CATWOE
Card Story Boards
Cartoon Story

Board
Causal Mapping
Charette
Cherry Split
Chunking
Circle of

Opportunity
Clarification
Classic

Brainstorming
Collective

Notebook
Comparison tables

Component
Detailing

Concept Fan
Consensus

Mapping
Constrained

BrainWriting
Contradiction

Analysis
Controlling Imagery
Crawford Slip

Writing
Creative Problem

Solving - CPS
Criteria for idea-

finding potential
Critical Path

Diagrams
DO IT
Decision seminar
Delphi
Dialectical

Approaches
Dimensional

Analysis
Disney Creativity

Strategy
Do Nothing
Drawing
Escape Thinking
Essay Writing
Estimate-Discuss-

Estimate
Exaggeration
Excursions
F-R-E-E-Writing
Factors in selling

ideas
False Faces
Fishbone Diagram
Five Ws and H
Flow charts
Focus Groups
Focusing
Force-Field Analysis
Force-Fit Game
Free Association
Fresh eye

Gallery method
Gap Analysis
Goal Orientation
Greetings Cards
Help-Hinder
Heuristic Ideation

Technique
Hexagon Modelling
Highlighting
Idea Advocate
Idea Box
Ideal Final Result
Imagery

Manipulation
Imagery for

Answering
Questions

Imaginary
Brainstorming

Implementation
Checklists

Improved Nominal
Group Technique

Interpretive
structural
modeling

Ishikawa Diagram
KJ-Method
Keeping a Dream

Diary
Kepner and Tregoe

method
Laddering
Lateral Thinking
Listing
Listing Pros and

Cons
Metaplan

Information
Market

Mind Mapping
Morphological

Analysis
Morphological

Forced
Connections

Multiple
Redefinition

121

NAF
NLP
Negative

Brainstorming
Nominal Group

Technique
Nominal-Interacting

Technique
Notebook
Observer and

Merged
Viewpoints

Osborn's Checklist
Other Peoples

Definitions
Other Peoples

Viewpoints
PDCA
PIPS
PMI
Paired Comparison
Panel Consensus
Paraphrasing Key

Words
Personal Balance

Sheet
Pictures as Idea

Triggers
Pin Cards
Plusses Potentials

and Concerns
Potential Problem

Analysis
Preliminary

Questions
Problem Centred

Leadership
Problem Inventory

Analysis - PIA
Problem Reversal

Productive Thinking
Model

Progressive Hurdles
Progressive

Revelation
Provocation
Q-Sort
Quality Circles
Random Stimuli
Rawlinson

Brainstorming
Receptivity to Ideas
Reframing Values
Relational Words
Relaxation
Reversals
RoleStorming
SCAMMPERR
SCAMPER
SDI
SODA
SWOT Analysis
Sculptures
Search Conference
Sequential-

Attributes Matrix
Similarities and

Differences
Simple Rating

Methods
Simplex
Six Thinking Hats
Slice and Dice
Snowball

Technique
Soft Systems

Method
Stakeholder

Analysis
Sticking Dots
Stimulus Analysis

Story Writing
Strategic

Assumption
Testing

Strategic Choice
Approach

Strategic
Management
Process

Successive Element
Integration

SuperGroup
SuperHeroes
Synectics
Systematic

Inventive Thinking
TILMAG
TRIZ
Talking Pictures
Technology

Monitoring
Think Tank
Thinkx
Thril
Transactional

Planning
Trigger Method
Trigger Sessions
Tug of War
Using Crazy Ideas
Using Experts
Value Brainstorming
Value Engineering
Visual Brainstorming
Visualising a Goal
Who Are You
Why Why Why
Wishing
Working with

Dreams and
Images

Different techniques can suit different situations, different
development tasks, different people, and different group
dynamics. With so many techniques available, selection
becomes a real problem, and there are some taxonomic

122

schemes which try to group techniques by function. Mycoted
use the scheme:

• Process
• Problem Definition
• Idea Generation
• Idea Selection
• Idea Implementation

A more complex scheme for idea generation techniques
(provided by Martin Leith) revolves around the worldviews that
the techniques exemplify

• Worldview 1 - The World is a Machine (based on rational
cause and effect thinking, and first order change -
emphasis on producing many ideas and selecting the
brilliant one)

• Worldview 1 Plus - The World is a Network of Relationships
• Worldview 2 - The World is a System (complex issues are

addressed through context manipulation, pattern analysis
and constraint removal)

123

• Worldview 3 - The World is a Field of Energy and
Consciousness (involves heightening the perception of
the idea generator)

Each of the worldviews has several categories:

Worldview 1 - The World is a
Machine

Inventory Making
Combining
Deconstructing
Building
Springboards
Ideas across Frontiers
Constraint Removal
Laddering (moving across

abstraction levels)
Anchoring and Spatial Marking

(from neuro-linguistic
programming)

Working Backwards
Worldview 1 Plus - The World is
a Network of Relationships

Conversational
Collaborative

Worldview 2 - The World is a
System

Break The Rules
Do More Of What Works
Minimalist Intervention

Worldview 3 - The World is a
Field of Energy and
Consciousness

Experiential
Shamanic

Some well-known techniques (for example mind-mapping) have
easily obtainable freeware tools. With so many different
techniques available there are problems both of repertoire
(which techniques should one have available) and selection
(which technique is appropriate to a given situation). The
techniques considered here vary a great deal in scope, purpose
and the level of background expertise necessary (from read
once and run to full blown academic problem solving methods
requiring several weeks of study to master). However most
creative people have their favourite techniques, and an
instinctive idea of when they should be used.

Schneiderman spent some time categorizing the primary types of
creativity tools and techniques: They tend to support
(individually or in some combination).

• establishing purpose and intention

124

• building basic skills
• encouraging acquisition of domain-specific knowledge
• stimulating and rewarding curiosity and exploration
• building motivation, especially internal motivation
• encouraging confidence and a willingness to take risks
• focusing on mastery and self-competition
• promoting supportable beliefs about creativity
• providing opportunities for choice and discovery
• developing self-management (meta-cognitive skills)
• teaching techniques and strategies for facilitating

creative performance

Creativity techniques that are aimed directly at software and
system development are much rarer, however. Some general
techniques can be fairly easily adapted to software
development; for example Luke Hohman’s innovation games.
Re-fashioning a work process as a game is a deliberate strategy
for opening different creative thinking possibilities – starting with
the idea that what is happening is entertaining and open, rather
than the routine execution of a generic work process. Hohman’s
games support: deciding product features (requirements
analysis), understanding projected customer (user) experience
with the new product, understanding the market relationship of
the product (software application) with other products in the
market, and a variety of other useful innovation processes. The
focus is upon ‘ideation’ – relatively early development of product
ideas in relation to customer needs. They are also focused on
teamwork – the subject of an earlier chapter.

A starting repertoire of creativity techniques for
software development
This section provides some suggestions for useful techniques
based on work conducted in the Software Innovation Research
Laboratory and the education programmes at Aalborg
University. In each case there is a short description of the
technique together with its role in the software development
process.

Brainstorming
Brainstorming (introduced by Alex Osborn) is a technique for
generating new ideas which is so well known that it needs no

125

description. However, there are some simple rules and
techniques for optimizing a brainstorming session, which are
often ignored, and it’s wise to look these up first and use them.

We typically use brainstorming for establishing the very first ideas
about a product and its features. Both users and developers can
easily contribute. It also establishes a good creative dynamic in
the group, where many ideas come into play, divergent thinking
is welcomed and an evaluative rather than critical tone of
communication is established. If users (or other stakeholders)
and developers work together, it also establishes the principle
that good ideas may come from anywhere (not just a user-driven
requirements list), and that they also need to be well
communicated to people with different expertise backgrounds.

Backward mapping
Backward mapping is a visioning technique that starts from the
premise that one is in the future in the desired state of success,
happiness, safety, delight or excitement. It then requires the
team to work backwards and specify the steps that they took to
achieve this state.

This technique is often used to focus the attention of developers
on the principle experiences of the users. The team is asked to
envision being the user of the finished software, and to specify its
novelty and utility, that is, how it positively contributes to their
practice and experiences. We ask them not to be constrained
by practicality, technical feasibility or economics, but to set
themselves in the ideal user experience where their life is
transformed. If they can describe this, then they can map
backwards to describe the various features of the software and
how they might be developed.

SCAMPER
SCAMPER (from the book Thinkertoys by Michael Michalko)
assumes that everything new is based on something already
existing. New ideas, products, services etc. can be developed
by taking something already existing and developing it into
something new. It provides seven ways to do this: Substitute,
Combine, Adapt, Magnify, Put to Other Uses, Eliminate (or
minimise) and Rearrange (or reverse). It’s often used with
freeware software which generates random questions provoking
the seven alteration modes.

126

This technique is used when an initial idea for a software product
is in place, or later in the development process where there is a
perceived need for a substantial review. The objective is to
radically improve the current software concept, which is often
expressed as a feature backlog, an interface sketch or some
other kind of prototype, design models, or as part of an
incrementally developed working system. A feature or screen
can be substituted with something else that works better,
combined with another feature, changed so that it performs a
different function, made the central focus of the entire concept,
or more or less eliminated and so on.

Six Serving Men
This technique is based on Rudyard Kipling’s poem:

I keep six honest serving-men
(They taught me all I knew);

Their names are What and Why and When
And How and Where and Who...

It requires the participants to consider the questions raised by the
six major interrogatory words in the English language.
This technique is used in our programmes at the point of initial
specification, when there is some kind of concept, but before
there is a real design or implementation effort. We use questions
like these:

• Who will use the main features? e.g. manager, user, web-
site visitor or customer?

• Where are the main features used?
• What major components and architectures will be

involved?
• When should components be available?
• Why are these features needed?
• How will a feature be designed or programmed?

Six thinking hats
In this discussion technique developed by Edward de Bono, six
different styles of thinking (factual, emotional, cautious, positive,
creative, and controlling) are identified, and then associated
with hats of different colours. Participants adopt different hats to
accommodate kinds of contribution to the discussion.

127

Six thinking hats is a good project review technique and can be
used periodically to give a quick status impression, perhaps at a
stand up meeting. All the thinking styles should be covered, with
someone who feels in tune with a thinking style leading a short
discussion. It should provoke questions like

• The White Hat (facts): are we keeping our schedule and
budget? Is our feature list complete, do we have the
people and resources we need?

• The Red Hat (emotions): Do you feel good about the
software product? Do you feel the team working well
together? Is there the right balance of challenge and
security, do you feel happy with your tasks

• The Black Hat (caution): What are the main risks,
drawbacks, and points of critique?

• The Yellow Hat (logical positive): What are the main
opportunities and the exciting challenges?

• The Green Hat (ideas): What else could we do that we’re
not currently doing? Can we work smarter? Should we
change direction?

• The Blue Hat (control): How should the rest of the project
be organized? Which steps comes first? How do we
make sure we meet our goals?

The next two techniques are targeted at providing focus and
overview in relation to the principle direction of the project, and
the principle characteristics of the software product. They are
typically used either

1. in the idea generation phase, when there are many
good ideas (for example for features), but a need for a
central governing concept or metaphor, or

2. later in the project when design and implementation are
more advanced, but the project is developing in several
directions, or

3. in situations where the project or product needs to be
effectively communicated to other stakeholders.

Vision box
The Vision Box is a technique for developing a marketing
message that can drive the product development effort. If the

128

product were to be marketed in supermarket, how would its box
look? What product features, benefits, and attributes would be
highlighted on the box to attract shoppers and encourage them
to buy? The technique was first adopted in the software field by
Jim Highsmith and leads to a low tech (cardboard and crayon)
mock up.

Thus technique works well in some development contexts – for
instance where a computer game is being developed where it
will eventually compete for shoppers’ attention with other games
on the shelves of a specialised video game shop. A variant is to
develop the product’s home page.

Elevator test
The elevator test develops the team’s ability to explain the
innovative software product to someone within two minutes – the
time it takes to ride an elevator. It comes from Geoffrey Moore's
book Crossing the Chasm. It follows the form of a logically
connected statement:

for (target customer)
who (statement of the need or opportunity)
the (product name) is a (product category)
that (key benefit, compelling reason to buy)

unlike (primary competitive alternative)
our product (statement of primary differentiation)

Work-style heuristic 7 – bring your toolbox
Software is seldom built without a variety of software tools and
analysis and design techniques. The innovative software
developer will clearly also need to work with suitable tools and
techniques, but there is little research which helps to specify
which tools and techniques will help. The choice will clearly be
contingent not generic – that is it will be project and situation
specific. There are very many developer tools of different kinds –
but these are not normally targeted at creativity or innovation.
There are even more creativity techniques to choose from – but
these are not targeted at software development.

Creative information system developers will therefore need a
repertoire - a range of tools and techniques that they are familiar
with. It’s impossible to learn everything, and this would also make
the job of choosing impossible. A repertoire of handful of each is
probably specific. Software tools might cover (as suggested):

129

• support for escaping routine work
• sandbox tools
• knowledge tools
• collaboration tools: internal (project), external (customers

and other stakeholders)
• visualization and overview support
• creativity technique support

Creativity techniques might cover some basic process functions
such as idea generation, focus and overview, review and
direction change. The next step will be selection – to match the
tools and techniques in the repertoire to the development
situation at hand. This may be formal and built into the project’s
structural conditions, but it’s just as likely to be improvised as a
response to the current demands, challenges and threats in the
project. Here intuition based on experience will guide selection.

Sources and further reading
ADAMIDES, E. D. & KARACAPILIDIS, N. (2006) Information
Technology Support for the Knowledge and Social Processes of
Innovation Management. Technovation, 26, 50-59.

GREENE, S. L. (2002) Characteristics of applications that support
creativity. Communications of the ACM, 45, 100-104.

HOHMAN, L. (2007) Innovation games: creating breakthrough
products and services, Boston, Pearson.

LEITH, M. Compendium of idea generation methods.
http://www.idea-
sandbox.com/wiki/index.php/Compendium_of_Idea_Generatio
n_Methods

MYCOTED, Creativity Techniques wiki. http://www.mycoted.com/

SHNEIDERMAN, B. (2000) Creating creativity: user interfaces for
supporting innovation. ACM Transactions on Computer-Human
Interaction (TOCHI), 7, 114-138.

SHNEIDERMAN, B. (2002) Creativity support tools.
Communications of the ACM, 45, 116-120.

SHNEIDERMAN, B. (2007) Creativity Support Tools.
Communications of the ACM, 50, 20-32.

130

8. Know when you are (not) innovative:
assessment and evaluation

Where developers focus on software innovation, it will be
important for them to know whether they are achieving it or not.
In this section we look at some formal and informal methods of
assessment. The question under scrutiny is: how do you know if
you are being innovative in development work?

The literature contains examples of several types of evaluation; in
particular of

• personal and group creativity
• software product assessment
• work environment inventory

The chapter will describe these assessment principles, but will also
acknowledge that they do not go far enough: in particular they
are of little help to development teams trying to assess their own
performance in a concrete project situation. Therefore a short
here-and-now, quick-and-dirty project evaluation instrument is
presented.

Personal creativity: psychometric testing
Psychometric testing is quite widely used in both research and in
practice; for example for assessing the suitability of job
applicants. Though this is a rather popularized use, in many
cases the tests are build on solid theory and large datasets.
Researchers have used innovation style profiling (see the chapter
on personal creativity) to evaluate the innovation styles of system
developers.

131

A set of questions lead to numerical scores on asset of four
scales, which is then used to plot the interviewee’s innovation
style. Though interesting research, it’s hard to see how these
techniques could be of widespread benefit to practising
software developers, apart from helping them to understand and
develop their personal creative potential.

Innovative software product assessment
A more relevant technique was developed by Lobert and
Dologite. They tried to evaluate the innovation potential of
proposals for software products, and developed a theoretically

132

based framework for the purpose. The framework is base on
three creativity dimensions (novelty; resolution; synthesis and
elaboration) which are used to evaluate the project idea, its
likely effect on the organization it is designed for, and its
technical elements. A series of questions are developed to
cover these nine parameters. There are no objective measures;
instead the answers are evaluated by experts. Two obvious
limitations with the research are that innovations are evaluated
at the proposal (idea) stage and that the experts in the study
were the professors of the students making the suggestions!
However, in principle the idea is sound and could be applied.

Work environment assessment
An assessment technique which is suitable for software managers
is the Work Environment Inventory (WEI). The inventory offers six
parameters for assessment, with questions and assessment
scores.

• freedom
• challenging work
• sufficient resources
• supervisory encouragement
• work group support
• organizational encouragement

The end result of the study gives a picture of how supportive the
work environment is for creativity and innovation.

Assessment overview
Though the techniques presented above offer some potential
they fall far short of any comprehensive or usable way of
measuring or describing software innovation. Among the
problems that should be recognized are:

• they are eclectic examples
• there is no systematic framework
• there are many sides of software innovation to be

evaluated
• many conventional economic assessment techniques are

long term measures, whereas innovation often involves
long delays before returns can be evaluated

133

• software innovation is highly situation dependent, and
generic techniques are not necessarily applicable.

In the framework
on the right
some assessment
measures are
proposed and
organized
around two axes.
The axes
distinguish
measures which
can be applied
here and now
from those which
will be
appropriate in
the future, and
formal measures
(based on methodical data collection and interpretation) from
informal types of impression gathering. The formal measures that
can be applied her and now include the research-oriented
techniques described above. A very conventional way of
measuring innovation is by counting patents, but this often relies
on having a formally described invention in a relatively late stage
of development. In addition, many, perhaps most inventions will
never be exploited of diffused, and thus cannot really ne
described as innovations. Software patents are easier to obtain
in the US than in Europe, and there are disagreements over what
constitutes a patentable software innovation. The conventional
economic measures, such as return on investment (RoI) and
market share, are dependent upon having the innovation in
production (or distribution in the case of software licenses) and
impact delays in innovation mean that these measures can be
rather long term. It may be some years after the launch of a
product before its economic effects can be properly evaluated.
Longer term informal measures are related to goodwill from
customers and reputation. Of more interest at this stage of the
evolution of software innovation theory are informal here and
now measures. These can allow developers to develop a feel for
their project. They include:

134

• flow – developers can often assess their own contribution
by observing their psychological state during their work.
Flow indicates productivity and concentration, whereas
thrashing is less desirable

• team performance – innovative teams have good role
distribution, dialogue, some degree of non-destructive
conflict, the ability to work with divergent thinking

• technical challenge – innovative projects are challenged
by the technical and programming demands – but not to
the point where the project’s survival is threatened

• user responses – innovative development projects have
constructive and challenging relationships with their
customers and users

• project status – an innovative project is often behind
schedule, because there are many difficulties, but not to
the degree that it will be fatally compromised

• challenge/response level – developers are challenged –
but in ways to which they are able to find suitable
reposes. They are stimulated and excited – but not under
unmanageable stress for long periods of time.

Here-and-now quick-and-dirty evaluation instrument
The following instrument is not based on empirical research;
however it does have a theoretical basis since it relies on the
material in this book, which is derived from the available research
in the area. The questionnaire takes ten minutes to complete
and is divided into eight areas which are given equal weight. In
each case you should consider the questions (each of which
reflects a specific theoretical sub-area), then give your project a
score out of seven, where seven means you are doing well.
Other members of the team can also use ten minutes, and you
can compare results.

Keep your head up
Do you understand the latest technical trends and
developments in the field you are working on?

Do you know the rival products that other software
companies are working on?

Do you understand the emerging technology potential?

135

Have you assessed what infrastructure your product requires,
and will it in place when the product is released?

Have you investigated the potential market for your product?

Is your timing right?

score []

Grow your knowledge community
Are you in contact with leaders in the field: other
development groups, researchers, universities, lead users?

Do you partner to improve your expertise base?

Can you import necessary expertise for the project when you
need it?

Do you get valuable external feedback from outside the
project? From outside the company

Are you a member of relevant online and offline knowledge
communities?

score []

Target your product’s innovation profile
Can you articulate the added value (utility) for the user?

Have you determined how your product is new and original?

Do you understand your user community – their work and
leisure habits?

Do you understand how your users’ lives will change when
they use your product?

Do you work with the product’s innovation profile?

score []

Shape your own process
Do you have an innovation process strategy and is it suitable
for the task?

Do you have the correct balance of market-led and
technology-led strategies?

Are there techniques and practices which stimulate the
creativity of the team, and does it allow space for creativity
and innovation?

136

Can you improvise your way out of the difficulties?

Do you continually and explicitly adapt your process to the
current needs of the project?

score []

Develop your personal creativity
Are you, personally, learning fast?

Does your role in the project suit and stimulate you?

Can you bring your expertise and experience to bear on the
software challenge?

Are you challenged and stimulated by the tasks you have
without feeling chronic stress?

Are you often in flow?

score []

Be a super-team-worker
Are you aware of the factors that hinder the team’s
innovation and do you work to improve them?

Does the team recognise sub-optimal teamwork and work to
improve it?

Does the team work towards an evolving shared vision and
know where it is going?

Does the team work at effective communication (dialogue)?

Does the team understand how to accommodate divergent
thinking?

Do the team members communicate their experience and
expertise and learn from each other?

score []

Bring your toolbox
Does the project have a repertoire of formal or informal
creativity techniques and use them where appropriate to help
you to move forward?

Do you have the right tool support to maximise creative
progress and minimise drudge work?

score []

137

Know when you are (not) innovative
Does the team recognise when it is not moving forward,
discuss it openly and do something differently as a result?

score []

Now identify the areas where you scored poorly and consider
appropriate responses. Don’t simply dismiss them as
inappropriate for your circumstances. There is a theoretical
background behind the questions which means that it is more
likely that you are letting your unconscious pre-dispositions
dominate too much, than that the question is irrelevant.

Work-style heuristic 8 – understand when you are (not)
innovative
Understanding the innovation status of a software project or the
innovation potential of a team of developers is a complex
problem. Some researchers have developed rather limited
techniques for assessing aspects of software innovation, but
these are eclectic and unsystematic. Nevertheless the alert
developer and software manager do have informal here and
now ways for monitoring their work. Innovative software projects
have many challenges: technical challenges, process
challenges, knowledge challenges, relationship challenges
communication challenges and economic challenges. This
means that they are inevitably difficult, at least in some periods.
However, long unproductive periods, sustained conflict or work
stress, insurmountable technical challenges and poor
communication with customers and users (and many other
things) threaten innovation. Developers need to understand
when they no longer innovative, and react by changing things.
The here-and-now quick-and-dirty evaluation instrument can
help in this process.

Sources and further reading
COUGER, J. D. (1996) Press: Measurement of the Climate for
Creativity in IS Organizations. Creativity and Innovation
Management, 5, 273-279.

DAVILA, T., EPSTEIN, M. J. & SHELTON, R. (2006) Making Innovation
Work: How to Manage It, Measure It, and Profit from It, Upper
Saddle River, Wharton School Publishing.

138

HIGGINS, L. (1996) A Comparison of Scales for Assessing Personal
Creativity in IS. International Conference on System Sciences.
Hawaii, IEEE.

LOBERT, B. M. & DOLOGITE, D. G. (1994) Measuring creativity of
information system ideas: an exploratory investigation. System
Sciences, 1994. Vol.IV: Information Systems: Collaboration
Technology Organizational Systems and Technology,
Proceedings of the Twenty-Seventh Hawaii International
Conference Hawaii.

MILLER, W. C., COUGER, J. D. & HIGGINS, L. F. (1993) Comparing
innovation styles profile of IS personnel to other occupations.

139

9. Software innovation: eight work-style
heuristics for innovative system
developers

Software innovation
In the various chapters of this book we have examined the
innovative software process and product, the creative software
developer, the innovative software team, creativity techniques
and software tools, innovation knowledge community and
network, technology trajectories and innovation windows, and
innovation assessment.

Software innovation is conducted in relation to social
developments, in particular infrastructure development and
market and technology trends. Technologies trends can be
understood as trajectories – moving in directions which can be
analyzed. Mechanical technologies become digital and
converge. Markets for software and user demand also develop
and display trends. Software innovation is always dependent on
social and technical infrastructures – if these are not sufficiently
developed the innovation is likely to fail. If we put these ideas
together we can develop the concept of an innovation window
– the right time to build a particular application.

Scientific, business and engineering innovation is not conducted
by isolated groups or individuals but in innovation networks and
knowledge communities. The innovative software developer’s

140

connections to equally innovative colleagues in related fields are
very important for building and sharing knowledge and ideas.
Software development has its own success story here – the open
source community. Open source development has been hailed
as a new ‘private collective’ innovation model.

The innovative software product, we concluded, displays both
novelty and utility. Invention (the novelty part) is not really
enough; innovation also contains the idea that the invention
should be exploited and diffused - that it should reach its target
community of users and be adopted. The consequence of
adoption is social change, not usually in the sense of profound
alterations to society (though can also happen), but in the sense
of communities of users who alter their work or leisure practice
through using the software. Software innovations can be
incremental (small practice changes in small niche user
communities), or radical and discontinuous. Altshuller’s theories
of technical system hierarchies and levels of innovation can help
us to understand the difference. The range of innovation is very
wide – software technologies are woven into the very fabric of
our lives in developed societies. The six utility forms describe the
width of types of innovative software products

• computing infrastructural
• technology enabling
• user service
• business change enabling
• interaction communication
• entertainment

The book develops the idea of an innovation profile for a
software product, involving the explicit consideration of the
product’s novelty, utility, user community, social change, market,
technical innovation and infrastructure dependence.

The innovative software process can be either linear – starting
with a flash of inspiration leading to a more or less complete new
product specification (the light bulb model), or iterative. This
reflects a contemporary evolution in software development
methods in which agile methods have come to complement
traditional methods. In the linear process form, focus is thrown on
creative requirements analysis; creative interactions with users
can be a way of developing an innovative information system
which does more than reflect an existing work process. However
examples of actual systems development methods focused on

141

innovation are rare – one such is Aaen’s ESSENCE, in the iterative,
agile tradition. Agile methods are a global process innovation
(they have only recently emerged) but this does not
automatically mean that the result of an agile method will be an
innovative software product. Agile methods are targeted at
efficiency, not innovation. However there is some reason to
expect that reduction in bureaucracy and the rational analysis
load could be conducive to innovation, and that rapid response
to change is essential. Most software development methods are
focused on user needs, but another way of thinking of software
innovation is as market-led (what consumers will buy) or
technology-led (what developers can come up with). Whatever
the approach, it will be wrong to assume that an external
imposed formalized method could (by itself) lead to an
innovative product; these situations will always require human
skills of improvisation and bricolage. The book develops six
innovation process strategies:

• creative requirements analysis
• the designed process framework
• low tech prototyping
• user-driven software innovation
• community development
• the research prototype.

Software process innovation can take place at a global or local
level. Agile methods are an example of global innovation,
whereas the many software process improvement initiatives can
lead to local innovation.

The book develops eight perspectives on the creative software
developer – understanding creativity as:

• the developer’s mental process: recognising and
exploiting discovery points

• a set of personal development competences concerned
with both solving problems and recognising opportunities

• a style of thinking associated with different strengths in
individual’s development personalities

• meta-thinking: recognising predispositions and
tendencies in one’s own (and others’) thinking and
coming beyond them

• whole-brain thinking: beyond rationality

142

• a relationship between the individual developer and
communities of people and ideas (domain, field)

• a state of mind: the way the developer’s mind is disposed
when being creative (flow)

• a universal mental skill to be enhanced

Developers work in teams and we characterized the innovative
software team as a super-functional team. We recognised
various creativity barriers and styles of group dysfunction as
hindering the creative team-process. Many factors can play a
positive role. An understanding of team roles enables the
building of innovative teams. The quality of the team’s
interaction is important, the way it accommodates divergent
thinking and the way it recognises productive social patterns in its
work. Team learning and expertise integration help with the
development and maintenance of overview, vision and
common purpose. Finally, an innovative team has a heads-up
attitude; it understands the commercial and scientific
developments, as well as the social trends, around it.

Software tool support is an important aspect innovative
development and the book develops a software support
toolbox, designed around:

• support for escaping routine work
• sandbox tools
• knowledge tools
• collaboration tools
• visualization and overview support
• creativity technique support.

Creativity techniques can be an element of the creative
software development process. There are many of these, and
they normally require a degree of adaptation to be meaningful
in system development work. The book develops a starting
repertoire including:

• brainstorming
• backward mapping
• SCAMPER
• six Serving Men
• six thinking hats
• vision box

143

• elevator test.

Finally, software innovators need to develop an instinct for when
their work is going well. There are many assessment and
evaluation techniques, but few which are directly targeted at
software innovation. A sensible strategy is to focus on intuitive
here and now assessments:

• flow
• team performance
• technical challenge
• user response
• project status
• challenge/response level.

Eight work-style heuristics for innovative system
developers
The book is not a method or process guide. Instead it works with
the idea of work-style heuristics – a broad characteristic which
typifies a developer’s way of working. Here are the eight
heuristics developed in the book.

Keep your head up
Systems and developers are engineers and business professionals
with many skills at their fingertips: analysis techniques, methods,
programming languages, project management techniques and
many others. Much of a development project involves the
application of those skills in a very close communication with
colleagues and (sometimes) users. The focus of this work is
inevitable inward. Programmers have a very intense relationship
with their code editors and spend many hours with their heads
buried in their screen. Software innovation, however, involves the
placement of a specialised product in a community of users at a
particular time. If the technology is immature, the infrastructure
insufficiently developed or the market undeveloped, then the
product will fail. If the technology is well-established, the
infrastructure more than adequate, and/or the market
screaming for the product, then the chances are your
competitors are already well ahead of you and you will never
catch up. No-one is better placed to understand these things
than you are, if you study them daily.

144

Grow your knowledge community
Innovation is dependent on knowledge, and knowledge is a
social process. Software innovators are usually not lone geniuses,
despite many of the myths that circulate. Most technical
advances involve many contributors in larger or smaller roles,
even if one person is later awarded the credit by history.
Companies, university researchers, research institutes, lead users,
specialised bedroom programmers, venture capitalists and
policy makers all have their role to play. In the development
world there are important roles for open innovators, in the various
open source communities and in collaboration with companies.
Software innovators recognise the importance of the
communities they are members of, know their place in those
communities, and work actively to foster them.

Target your product’s innovation profile
An innovative software product has certain characteristics. It is
novel in relation to its projected user community and it has a
particular utility for them. It may be an incremental innovation or
a more radical one, and have more or less significance for a
small, or a very large social group. However the innovator needs
to understand and target the innovation potential of the
product. This can be described as its innovation profile. Of
course some innovations have a life of their own and find uses
that were never intended, but, in general a development team
needs to understand how the product will fit into the work or
entertainment practice of their users, and how it will develop that
practice.

Shape your own process
Developing an innovative software product is likely to be
turbulent and challenging, and, although systems developers
have a long history of developing and implementing (and
sometimes even using) design processes, it is far from clear what
an optimal software innovation process is. Most likely there are
as many successful development processes as there are
innovative teams. Common to all process will be the ability to
improvise the way out of difficulties, dead ends and seemingly
insurmountable challenges. Alertness is the key, and the
developers needs to take charge of their own process, adapt to
the needs of the particular project, and adapt it again when it’s
no longer working. And again, and again......................

145

Develop your personal creativity
Everyone is creative in their own way, and every developer has
their own creativity style and personality. These can be quite
different, and highly situation-dependent. A ground-breaking
contribution in one situation can simply be a handicap in
another. However software innovators are aware of their own
creative profiles: what they can and cannot contribute. They
actively develop them and understand how to incorporate them
into the work of the team.

Be a super-team-worker
An innovative software team is a super-functional team. It works
particularly well in communication and problem-solving, can
manage its own process and achieve overview and coherence,
and exploits the competences of each of its members to
achieve a synergistic result. Innovative developers understand
their role in such a team and contribute not only to their personal
performance, but to the joint performance of the team – which
is, in the end result, more important.

Bring your toolbox
Software development is dependent on software tools and
development techniques, and innovative software development
is no exception. An innovative software developer has a
repertoire of tools and techniques, and applies them selectively –
the right tool or technique for the correct development situation.

Know when you are (not) innovative
Not everything goes smoothly all the time. Projects function well
in periods, then develop problems and recover. Sometimes they
become disaster areas. Innovative projects are particularly
challenging and therefore liable to encounter non-creative
periods. Sometimes these will be temporary and unimportant,
but often developers will need to be capable of recognizing that
there is a problem and reacting appropriately. Often the
appropriate reaction will be some form of process adjustment to
get things working again.

146

Keep your head up

Grow your knowledge community
Target your product’s innovation profile

Shape your own process
Develop your personal creativity

Be a super-team-worker
Bring your toolbox

Know when you are (not) innovative

Now it’s your turn…………………….

Jeremy Rose

Aalborg, December 2010

147

Comprehensive list of reading and sources

ADAMIDES, E. D. & KARACAPILIDIS, N. (2006) Information

Technology Support for the Knowledge and Social
Processes of Innovation Management. Technovation, 26,
50-59.

ALTSHULLER, G. S. (1988) Creativity as an Exact Science, New
York, USA, Gordon & Breach.

AMABILE, T. M., CONTI, R., COON, H., LAZENBY, J. & HERRON, M.
(1996) Assessing the Work Environment for Creativity. The
Academy of Management Journal, 39, 1154-1184.

AMOROSO, D. L. & COUGER, J. D. (1995) Developing Information
Systems with Creativity Techniques: An Exploratory Study.
Proceedings of the 28th Annual Hawaii International
Conference on System Sciences.

BANSLER, J. & HAVN, E. (2004) Improvisation in information
systems development. IN KAPLAN, B. (Ed.) Information
Systems Research. Boston, Springer.

BEARDON, C., EHN, P. & MALMBORG, L. (2002) Design of
Technology-Augmented Creative Environments.
Proceedings of Computer Support for Collaborative
Learning 2002, 7-11.

BELBIN, M. (1981) Management Teams, London, Heinemann.

BROOKS, F. P. (1975) The Mythical Man Month.

CANDY, L. & EDMONDS, E. (2000) Creativity enhancement with
emerging technologies. Communications of the ACM, 43,
63-65.

CHESBROUGH, H. (2003) Open Innovation: The New Imperative
for Creating and Profiting from Technology, Boston, MA,
Harvard Business School Publishing.

COOPER, R. B. (2000) Information Technology Development
Creativity: A Case Study of Attempted Radical Change.
MIS Quarterly, 24, 245-276.

COPLIEN, J. O. & HARRISON, N. B. (2005) Organizational Patterns
of Agile Software Development, Pearson Prentice Hall.

148

COUGER, J. D. (1990) Ensuring Creative Approaches in
Information System Design. Managerial and Decision
Economics, 11, 281-295.

COUGER, J. D. (1996) Press: Measurement of the Climate for
Creativity in IS Organizations. Creativity and Innovation
Management, 5, 273-279.

COUGER, J. D. (1997) Creativity/Innovation in Information Systems
Organizations. System Sciences, 1997, Proceedings of the
Thirtieth Hawaii International Conference on, 3.

COUGER, J. D. (1997) Results of a trans-discipline research
structure for study of creativity/innovation in IS. System
Sciences, 1997, Proceedings of the Thirtieth Hawaii
International Conference on, 3.

CSIKSZENTMIHALYI, M. (1997) Creativity: flow and the psychology
of discovery and invention, Harper Perennial.

DAVILA, T., EPSTEIN, M. J. & SHELTON, R. (2006) Making Innovation
Work: How to Manage It, Measure It, and Profit from It,
Upper Saddle River, Wharton School Publishing.

DE BONO, E. (1971) The Use of Lateral Thinking: A Textbook of
Creativity, Penguin.

DEARDEN, A. & HOWARD, S. (1998) Capturing user requirements
and priorities for innovative interactive systems.
Proceedings of the Australasian Computer Human
Interaction Conference, 160–167.

DENNING, P. J. (2004) The social life of innovation.
Communications of the ACM, 47, 15-19.

DUGGAN, E. W. (2003) Generating Systems Requirements With
Facilitated Group Techniques. Human-Computer
Interaction, 18, 373-394.

DUGGAN, E. W. & THACHENKARY, C. S. (2004) Integrating nominal
group technique and joint application development for
improved systems requirements determination. Information
& Management, 41, 399-411.

ELAM, J. J. & MEAD, M. (1987) Designing for creativity:
considerations for DSS development. Information and
Management, 13, 215-222.

ELAM, J. J. & MEAD, M. (1990) Can software influence creativity.
Information Systems Research, 1, 1-22.

149

EVANS, M., WALLACE, D., CHESHIRE, D. & SENER, B. (2005) An
evaluation of haptic feedback modelling during industrial
design practice. Design Studies, 26, 487-508.

FAGERBERG, J. (2005) Innovation: a guide to the literature. IN
FAGERBERG, J., MOWERY, C. & NELSON, R. R. (Eds.) The
Oxford Handbook of Innovation Oxford, Oxford University
Press.

FAGERBERG, J., MOWERY, C. & NELSON, R. R. (Eds.) (2005) The
Oxford Handbook of Innovation, Oxford, Oxford University
Press.

FELLERS, J. W. & BOSTROM, R. P. (1993) Application of group
support systems to promote creativity in information systems
organizations. System Sciences, 1993, Proceeding of the
Twenty-Sixth Hawaii International Conference on, 4.

FRANKE, N. & HIPPEL, E. (2003) Satisfying heterogeneous user
needs via innovation toolkits: the case of Apache security
software. Research Policy, 32, 1199-1215.

FRASER, J. (2005) Inspired innovation: how Corel is drawing upon
employees' ideas for user focused innovation. Proceedings
of the 2005 conference on Designing for User eXperience.

GARFIELD, M. J., TAYLOR, N. J., DENNIS, A. R. & SATZINGER, J. W.
(2001) Research Report: Modifying Paradigms--Individual
Differences, Creativity Techniques, and Exposure to Ideas in
Group Idea Generation. Information Systems Research, 12,
322-333.

GASSMANN, O. & ENKEL, E. (2004) Towards a theory of open
innovation, three core process archetypes. R&D
Management Conference. Sesimbra.

GLASS, R. L. & DEMARCO, T. (2006) Software Creativity 2.0.

GREENE, S. L. (2002) Characteristics of applications that support
creativity. Communications of the ACM, 45, 100-104.

HACKLIN, F., RAURICH, V. & MARXT, C. (2004) How incremental
innovation becomes disruptive: the case of technology
convergence. Engineering Management Conference. IEEE
International

HELO, P. (2003) Technology trajectories in mobile
telecommunications. International Journal of Mobile
Communications, 1, 233-246.

150

HIGGINS, L. (1996) A Comparison of Scales for Assessing Personal
Creativity in IS. International Conference on System
Sciences. Hawaii, IEEE.

HOHMAN, L. (2007) Innovation games: creating breakthrough
products and services, Boston, Pearson.

HOLMQUIST, L. E. (2004) User-driven innovation in the future
applications lab. CHI '04 extended abstracts on Human
factors in computing systems. Vienna, Austria, ACM.

JORDAN, P. W., KELLER, K. S., TUCKER, R. W. & VOGEL, D. (1989)
Software storming: combining rapid prototyping and
knowledge engineering. Computer, 22, 39-48.

KANTER, R. M. (2006) Innovation: the classic traps. Harvard
Business Review, 84, 72-83.

KOSKI, H. A. (1999) The Installed Base Effect: Some Empirical
Evidence From The Microcomputer Market. Economics of
Innovation and New Technology, 8, 273-310.

LEINBACH, T. R. & BRUNN, S. D. (2002) National innovation systems,
firm strategy, and enabling mobile communications: the
case of Nokia. Tijdschrift voor Economische en Sociale
Geografie, 93, 489-508.

LIND, J. (2007) Boeing's Global Enterprise Technology Process. IEEE
Engineering Management Review, 35, 38-52.

LOBERT, B. M. & DOLOGITE, D. G. (1994) Measuring creativity of
information system ideas: an exploratory investigation.
System Sciences, 1994. Vol.IV: Information Systems:
Collaboration Technology Organizational Systems and
Technology, Proceedings of the Twenty-Seventh Hawaii
International Conference Hawaii.

LYYTINEN, K. & ROSE, G. M. (2003) Disruptive information system
innovation: the case of internet computing. Information
Systems Journal, 13, 301-330.

LYYTINEN, K. & ROSE, G. M. (2006) Information system
development agility as organizational learning. European
Journal of Information Systems, 15, 183-199.

MAIDEN, N. & MANNING, S.

MAIDEN, N., MANNING, S., ROBERTSON, S. & GREENWOOD, J.
(2004) Integrating creativity workshops into structured
requirements processes. Proceedings of the 5th
conference on Designing interactive systems: processes,

151

practices, methods, and techniques. Cambridge, MA, USA,
ACM.

MAIDEN, N. & ROBERTSON, S. (2005) Integrating Creativity into
Requirements Processes: Experiences with an Air Traffic
Management System. Requirements Engineering, 2005.
Proceedings. 13th IEEE International Conference on, 105-
116.

MARAKAS, G. M. & ELAM, J. J. (1997) Creativity Enhancement in
Problem Solving: Through Software or Process?
Management Science, 43, 1136-1146.

MARTINICH, L. (2002) Managing innovations, standards and
organizational capabilities. Engineering Management
Conference, 2002. IEMC'02. 2002 IEEE International, 1.

MCCONNELL, S. (1998) The Power of Process. Computer, 31, 100-
102.

MCLEAN, E. R. & SMITS, S. J. (1993) The I/S leader as `innovator'.
System Sciences, 1993, Proceeding of the Twenty-Sixth
Hawaii International Conference.

MICH, L., ANESI, C. & BERRY, D. M. (2005) Applying a pragmatics-
based creativity-fostering technique to requirements
elicitation. Requirements Engineering, 10, 262-275.

MILLER, W. C., COUGER, J. D. & HIGGINS, L. F. (1993) Comparing
innovation styles profile of IS personnel to other
occupations.

NONAKA, I. (1991) The Knowledge-Creating Company. Harvard
Business Review, 69.

PINK, D. H. (2005) A Whole New Mind. Riverhead, New York, NY.

POWELL, W. & GRODAL, S. (2005) Networks of Innovators. IN
FAGERBERG, J. (Ed.) The Oxford Handbook of Innovation.
New York, Oxford.

ROBERTS, E. B. (1988) Managing invention and innovation.
Research Technology Management, 31, 11-27.

SAMPLER, J. L. & GALLETTA, D. F. (1991) Individual and
organizational changes necessary for the application of
creativity techniques in the development of information
systems. Proceedings of the Twenty-Fourth Annual Hawaii
International Conference on System Sciences. Hawaii.

152

SAMUELSON, P. (2006) IBM’s Pragmatic Embrace of Open Source.
Communications of the ACM, 49, 21-5.

SHNEIDERMAN, B. (2000) Creating creativity: user interfaces for
supporting innovation. ACM Transactions on Computer-
Human Interaction (TOCHI), 7, 114-138.

SHNEIDERMAN, B. (2002) Creativity support tools.
Communications of the ACM, 45, 116-120.

SHNEIDERMAN, B. (2007) Creativity Support Tools.
Communications of the ACM, 50, 20-32.

SNOW, T. A. & COUGER, J. D. (1991) Creativity improvement
intervention in a system development work unit. System
Sciences, 1991. Proceedings of the Twenty-Fourth Annual
Hawaii International Conference

STEPHENSON, N. (1999) In the Beginning...was the Command Line,
Harper Perennial.

STREITZ, N. A., GEIßLER, J., HOLMER, T., MÜLLER-TOMFELDE, C.,
REISCHL, W., REXROTH, P., SEITZ, P. & STEINMETZ, R. (1999) i-
LAND: an interactive landscape for creativity and
innovation. Proceedings of the SIGCHI conference on
Human factors in computing systems: the CHI is the limit,
120-127.

TAPSCOTT, D. & A.D, W. (2006) Wikinomics: How Mass
Collaboration Changes Everything, New York, Portfolio
Hardcover.

THOMAS, J. C., LEE, A. & DANIS, C. (2002) Enhancing creative
design via software tools. Communications of the ACM, 45,
112-115.

TIWANA, A. & MCLEAN, E. R. (2003) Expertise Integration and
Creativity in Information Systems Development. Journal of
Management Information Systems, 22, 13-43.

TUOMI, I. (2001) Internet, Innovation, and Open Source: Actors in
the Network. First Monday, 6.

TUOMI, I. (2003) Networks of Innovation. Oxford Press.

VON HIPPEL, E. & VON KROGH, G. (2003) Open Source Software
and the “Private-Collective” Innovation Model: Issues for
Organization Science. Organization Science, 14, 209-223.

153

VON KROGH, G., SPAETH, S. & LAKHANI, K. R. (2003) Community,
joining, and specialization in open source software
innovation: a case study. Research Policy, 32, 1217-1241.

WALKER, G. H., STANTON, N. A. & YOUNG, M. S. (2001) Where is
computing driving cars? A technology trajectory of vehicle
design. International Journal of Human Computer
Interaction, 13, 203-229.

WALLAS, G. (1926) The art of thought, J. Cape.

WALZ, D. B. & WYNECOOP, J. (1994) Creativity and Software
Design - is formal training helping or hurting? Systems, Man,
and Cybernetics, 1994. 'Humans, Information and
Technology'., 1994 IEEE International Conference

WARR, A. & O'NEILL, E. (2005) Understanding design as a social
creative process. Proceedings of the 5th conference on
Creativity & cognition, 118-127.

AAEN, I. (2008) Essence: Facilitating Agile Innovation. XP2008.
Limerick, Ireland.

AAEN, I. (2008) Essence: facilitating software innovation.
European Journal of Information Systems, 17, 543-553.

