Optimizing the Identification of Citrullinated Peptides by Mass Spectrometry

Tue Bennike¹, Kasper B. Lauridsen¹, Michael Kruse Olesen², Vibeke Andersen², Svend Birkelund¹, Allan Stensballe¹
¹Department of Health Science and Technology, Aalborg University, Denmark
²Department of Rheumatology, and Center for Clinical Research, Vendsyssel Teaching Hospital, Denmark
³Institute of Regional Health Services Research, University of Southern Denmark

AIM
- Investigate the cleavage properties of trypsin after a citrulline residue.
- Investigate the behavior of citrullinated peptides by reversed phase chromatography.
- Propose a verification strategy for detected citrullinated peptides in a MS workflow.

Conclusion
- Our results clearly demonstrate the inability of trypsin to cleave after citrulline residues. As a result, a miscleavage can be used to distinguish a citrullination from a deamidation of asparagine or glutamine.
- The shift in retention time was, for 22 of 24 peptides large enough to ensure that both peptides could be identified.

Introduction
Citrullination is a PAD-enzyme catalyzed deamination of arginine, yielding the non-standard amino acid citrulline.¹

![Citrullination Reaction](image)

Protein citrullination has been associated with several diseases and auto-antibodies against citrullinated proteins are today used as an important clinical biomarker in rheumatoid arthritis.² ³ The site-specific characterization of citrullination using mass spectrometry remains problematic, especially as citrullination and deamidation of asparagine or glutamine results in the same mass increase of +0.984016 Da. The verification, therefore, often relies on a tryptic miscleavage after citrulline.² Furthermore, the mass increase is close to that of a neutron, +1.08665 Da.

However, tryptic cleavage after citrulline has in some cases been reported, so we here investigate the cleavage properties of trypsin after a citrulline residue.

Results and Discussion
In situ digestion results were compared to the empirical data. For SP 10, prior to digestion only the synthetic peptide is detected and after digestion, peptides corresponding to PAPDR, LLLASPR and SCYK are detected, corresponding to a successful complete cleavage after 495Arg. This is not the case after digestion of SP 10,Cit where peptides corresponding to PAPDR, LLLASPR and Cit,SCYK are detected. All investigated peptides demonstrate this behavior.

Method
24 synthetic peptide sets containing either arginine or citrulline were analyzed (3PT Peptide Technologies GmbH). The peptide sequences originated from disease-associated in vivo citrullinated proteins. In-solution tryptic digestion was performed with sequencing grade trypsin (Promega). The peptides were separated using an in-house packed 10 cm reversed phase C18 column (Dr. Maisch; repnost-il C18- AQ) with acetonitrile.

Extracted ion chromatograms (XIC) were constructed in Bruker Daltonics DataAnalysis v 3.4, with all predicted tryptic peptides +/- m/z 0.01, under the assumption that trypsin cleaves after arginine, lysine and citrulline.

![Extracted Ion Chromatograms](image)

References
2. O. A. Schlievert, et al., "Citrulline is an essential component of endotoxin lipopolysaccharide designated by the endotoxin-specific autotransporter" (2019).