Optimizing the Identification of Citrullinated Peptides by Mass Spectrometry

Tue Bennike1, Kasper B. Lauridsen1, Michael Kruse Olesen2, Vibeke Andersen3, Svend Birkelund1, Allan Stensballe1
1Department of Health Science and Technology, Aalborg University, Denmark
2Department of Rheumatology, and Center for Clinical Research, Vendsyssel Teaching Hospital, Denmark
3Institute of Regional Health Services Research, University of Southern Denmark

Aim

- Investigate the cleavage properties of trypsin after a citrulline residue.
- Investigate the behavior of citrullinated peptides by reversed phase chromatography.
- Propose a verification strategy for detected citrullinated peptides in a MS workflow.

Introduction

Citrullination is a PAD-enzyme catalyzed deamination of arginine, yielding the non-standard amino acid citrulline.1

Protein citrullination has been associated with several diseases and auto-antibodies against citrullinated proteins are today used as an important clinical biomarker in rheumatoid arthritis.2,5 The site-specific characterization of citrullination using mass spectrometry remains problematic, especially as citrullination and deamidation of asparagine or glutamine results in the same mass increase of +0.984016 Da. The verification, therefore, often relies on a mass increase to that of a neutron, +1.08665 Da.

However, tryptic cleavage after citrulline has in some cases been reported, so we here investigate the cleavage properties of trypsin after a citrulline residue.

Method

24 synthetic peptide sets containing either arginine or citrulline were analyzed (SPT Peptide Technologies GmbH). The peptide sequences originated from disease-associated in vivo citrullinated proteins. In-solution tryptic digestion was performed with sequencing grade trypsin (Promega). 1 pmol sample was analyzed using ESI LC-MS/MS in positive ion mode, on a hybrid microQTOF mass spectrometer (Bruker). The peptides were separates using an in-house packed 10 cm reversed phase C18 column (Dr. Maisch; reprosil-pur C18-AQ) with acetonitrile.

Extracted ion chromatograms (XIC) were constructed in Bruker Daltonics DataAnalysis v 3.4, with all predicted tryptic peptides +/- m/z 0.01, under the assumption that trypsin cleaves after arginine, lysine and citrulline.

Results and Discussion

In situ digestion results were compared to the empirical data. For SP 10, prior to digestion only the synthetic peptide is detected and after digestion, peptides corresponding to PAPDR, LLLASPCitSCYK are detected. This is not the case after digestion of SP 10 Cit, where peptides corresponding to PAPDR and LLLASPCitSCYK are detected.

Our results clearly demonstrate the inability of trypsin to cleave after citrulline residues. Hence, a miscleavage indicates the presence of the PTM. Furthermore, the shift in retention time between the citrulline and arginine peptides was large enough for 22 of the 24 peptides to ensure that both peptides could be identified.

References

6. T. Bennike, et al., "Propose a verification strategy for detected citrullinated peptides by reversed phase chromatography."

Download Paper