A wavelet-based approach to the discovery of themes and sections in monophonic melodies
Velarde, Gissel; Meredith, David

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
A Wavelet-Based Approach to the Discovery of Themes and Sections in Monophonic Melodies
Gissel Velarde & David Meredith

The idea
- With a good melodic structure in terms of segments, it should be possible to gather similar segments into clusters and rank their salience within the piece. (See ‘paradigmatic analysis’ [1])

The Method
- The method follows and extends our previously reported approach to melodic segmentation and classification based on filtering with the Haar wavelet [4].
- The method uses the idea of “window connectivity information” from [2].

Results
- On the JKU Patterns Development Database monophonic version[1]
 - Test set: 5 pieces

Example: Bach’s Fugue BWV 889 prototypical pattern

Submissions VM1 and VM2
For both submissions the parameters are: melodies sampled at 16 samples per quarter note (4p), Distance for both comparisons: city-block, Number of clusters: 7, Ranking criterion: Sum of the length of occurrences. VM1 differs from VM2 in the following parameters:

VM1
- Normalized pitch signal representation,
- Constant segmentation at the scale of 1 qn,
- Threshold for concatenation 0.1.

VM2
- Wavelet coefficients representation filtered by Haar at the scale of 1 qn,
- Modulus maxima segmentation at the scale of 4 qn,
- Threshold for concatenation 1

Conclusions
Our novel wavelet-based method performed better on the training than in the test dataset. This is difficult to study since we do not have access to the test dataset. For training and test datasets VM1 and VM2 show no significant difference in the results of the “three-layer” F1 score. On the other hand, for discovering exact occurrences, the difference between VM1 and VM2 becomes smaller in the training dataset and therefore it is suggested that there is no significant difference in the results of VM1 and VM2. However, there is a statistically significant difference in the runtime, suggesting that VM2 should be preferable for fast computation.

References

Acknowledgements
Gissel Velarde is supported by a PhD fellowship from the Department of Architecture, Design and Media Technology, Aalborg University. David Meredith’s work on this project was partially supported by the FET collaborative project “Learning to Create” (Lirective). The project Lirective acknowledges the financial support of the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FET grant number 610850.