Polyamorphic transition, structural heterogeneity and functionality in glass
Yue, Yuanzheng

Publication date:
2014

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: december 31, 2018
Polyamorphic transition, structural heterogeneity and functionality in glass

Yuanzheng Yue

Section of Chemistry, Aalborg University, Denmark
State Key Laboratory of SMART, Wuhan University of Technology, China

In this talk I present some new thoughts to clarify the impact of nanostructuring and polyamorphic transitions on both glass functionality and glass formation, respectively. I emphasize the role of the order/disorder interplay in dictating material functionalities by analyzing the following two cases reported in [1,2].

First, a kind of multiphase nanostructured glass as a cathode material has been developed by using the bio-template approach to improve the performances of lithium ion batteries [1]. The nanostructure, along with the mesoporous glass phase, has provided effective sites for storing Li$^+$ ions and for easier transfer kinetics of electrons and lithium ions, and hence has displayed the superior discharge capacity and ultra-high Coulombic efficiency. Here I give some new implications on the microscopic mechanisms of the enhancement of the electrochemical performances of the new cathode materials.

Second, when a single crystalline metal-organic framework (MOF) undergoes a well-controlled dynamic heating process in DSC, it collapses into a low density amorphous (LDA) phase, and then is immediately transformed into a high density liquid phase state followed by re-crystallization, subsequent melting and final disassociation [3]. However, when the liquid phase prior to crystallization is cooled, a high density amorphous (HDA) phase is obtained. When the HDA phase is reheated, it undergoes a glass transition. Remarkably, when re-crystallized HDA phase is melted and then quenched, even a bulk MOF glass can be obtained [2]. Here I describe thermodynamic and dynamic aspects of formation of the bulk MOF glasses by analyzing their thermal histories.

References: