Abstract — A microgrid (MG) is a local energy system consisting of a number of energy sources (e.g., wind turbine or solar panels among others), energy storage units and loads that operate connected to the main electrical grid or autonomously. MGs provide flexibility, reduce the main electricity grid dependence and contribute to change the large centralized production paradigm to local and distributed generation. However, such energy systems require complex management, advanced control and optimization. Moreover, the power electronics converters have to be used to correct energy conversion and interconnected through common control structure is necessary. Classical Droop Control system is often implemented in microgrid. It allows to the correct operation of parallel voltage source converters (VSI) in grid connected as well as islanded mode of operation. However, it requires complex power management algorithms, especially in islanded microgrids, which balances system, improves reliability. The novel reactive power sharing algorithm is developed, which takes into account the converters parameters as apparent power limit and maximum active power. The developed solution is verified in simulation and compared with other known reactive power control methods.

Index Terms— distributed generation, droop control, microgrid, power converters, reactive power sharing.

I. INTRODUCTION

Microgrid (MG) is a separate system that produces and storages electrical energy, which consists of renewable energy sources (RES), local loads and energy storage based on batteries or supercapacitors. It is inherent part of modern and popular smartgrids [1], [2], which includes also intelligent buildings, electrical car stations etc. All RES are using power electronics devices (e.g. converters), which number significantly increasing and costs decreasing in range 1% - 5% every year [3] - [7]. RES are usually connected to the grid and many installations cause the parallel operation of RES close to each other. This is one of reasons to future change of the classical structure of electrical power systems, toward new solution containing distributed generation, energy storage, protection and control technologies, improving their performances [8].

Microgrid is highly advanced system from control and communication point of view. It has to manage power for local loads as well as control all converters with high efficiency and accuracy, especially when microgrid operates as islanded system. Islanding mode of operation provide the uninterruptible power supply (UPS) for local loads during grid faults. The performances of islanded microgrid are specified according to IEEE Std. 1547.4 [9]. With increasing number of RES applications, operating parallel, close to each other (few km) and with developed islanded mode of operation, the microgrids are become perfect solution for RES integration.

Fundamental algorithms of AC microgrids, described in literature [10]-[20], are based on master-slave control or hierarchical droop control. The first solution includes only one converter with voltage control loop (VCL), operating as a master, and others operating in current control loop (CCL) - slaves. The produced power is controlled by sources with CCL and the voltage amplitude and frequency is keeping in point of common coupling (PCC) by master unit. Disadvantage of this solution is no possibility to connect other VCL sources to microgrid, which are the most popular and used RES solutions. The second control solution, called Droop Control, includes many VCL sources and provides possibility to many different RES interconnection. The idea of droop control is based on active and reactive power related to voltage frequency and amplitude droop on coupled impedances. Unfortunately, classical droop control method with proportional droop coefficients does not provides proper reactive power sharing between converters connected to common AC bus. In classical approach, the equal reactive power sharing can be obtained only when active powers are equal and droop coefficients are well chosen. When active powers are changing, the reactive power sharing cannot be controlled causing overload or reactive power circulation between converters. Moreover, the important issue in droop control is static trade-off between voltage regulation and reactive power [21]. For increasing reactive power, the voltage
droop on converter’s output impedance also increase, what may cause overvoltage. In order to provide appropriate power sharing and minimize the risk of converter damage the many additional aspects (e.g. nominal apparent power, instantaneous active power, nominal voltage of converter) have to be considered in control system.

There are only few papers describing reactive power sharing between parallel operating converters in islanded AC microgrids. The researchers focused on equal reactive power sharing (ERPS) between all RES usually controlled by microgrid central control unit [22]-[27] or implemented as virtual impedances [15], [28]. From the other hand, researches consider reactive power sharing in order to optimize transmission power losses by appropriate optimization algorithm (e.g. particle swarm optimization) [29]-[31], which can be neglected in microgrids, hence the short distances and the line impedances are low.

However, algorithms described in literature are not considering capabilities of single RES, which have limited apparent power. If active power, usually calculated from Maximum Peak Power Tracking (MPPT) algorithms [32]-[37], obtain almost nominal apparent converter limit the equal power sharing algorithms cannot be used, because the overload can occur, what leads to damage or exclusion from operation of RES unit.

The new reactive power sharing algorithm is developed and presented in this paper. In first section the current solutions and problems of reactive power sharing are described. In section II the classical droop control is presented, which is used in converter’s control system. A new algorithm is featured in section III and the simulation results are shown in section IV in order to presenting the problem of reactive power sharing and proper operation of developed solution.

II. CLASSICAL DROOP CONTROL

When at least two RES are connected through energy converters to the microgrid, the droop control method is often applied [11], [14]-[15], what provides the correct parallel operation of voltage source converters (VSI). The equivalent circuit of two converters connected to common AC microgrid bus can be presented by Fig. 1.

![Equivalent circuit of parallel connected VSIs](image)

Fig. 1. Equivalent circuit of parallel connected VSIs.

Presented scheme is similar to the equivalent circuit of synchronous generator (SG), hence the active and reactive power of \(k \)-th converter connected to AC microgrid can be described as:

\[
P_k = \frac{E_k V}{X_k} \sin \varphi_k
\]

\[
Q_k = \frac{E_k V \cos \varphi_k - V}{X_k}
\]

where \(P \) – active power, \(E \) – converter voltage amplitude, \(V \) – voltage amplitude in point of common coupling, \(X \) – coupling impedance, \(\varphi \) – angle of converter voltage (see Fig. 1).

Based on above equations it can be assumed, that:

- active power \(P \) mainly depends on \(\varphi \), which is changing by \(\omega \),
- reactive power \(Q \) depends on voltage amplitude \(E \).

Hence, the \(P \) – \(\omega \) and \(Q \) – \(E \) droop characteristics can be drawn (Fig. 2). In order to implement these characteristics in VSI control algorithm, the outer droop control loops are created (Fig. 3), which can be described by (3) and (4).

![P - \omega and Q - E droop characteristics](image)

Fig. 2. P - \(\omega \) and Q - \(E \) droop characteristics

![Block scheme of control structure for one of the converters in islanded microgrid](image)

Fig. 3. Block scheme of control structure for one of the converters in islanded microgrid

\[
\omega = \omega^* - G_p(s) \cdot (P - P^*)
\]

(3)

\[
E = E^* - G_q(s) \cdot (Q - Q^*]
\]

(4)

where: \(E \) and \(\omega \) are referenced voltage amplitude and frequency for inner control loops, \(E^* \) and \(\omega^* \) are nominal voltage amplitude and frequency, \(P \) and \(Q \) are calculated active and reactive power, \(P^* \) and \(Q^* \) are the active and reactive power referenced values, \(G_p(s) \) and \(G_q(s) \) are corresponding transfer functions.

Typically in classical droop control \(G_p(s) \) and \(G_q(s) \) are proportional (constant) droop coefficients. It has happened, when microgrid not includes any energy storage and total load cannot absorb total injected power. These proportional coefficients can be calculated by (5) and (6). Block schemes of \(P \) – \(\omega \) and \(Q \) – \(E \) control loops is presented on Fig. 4.

\[
G_p(s) = m = \frac{\Delta \omega_{\max}}{P_{\max}}
\]

(5)

\[
G_q(s) = n = \frac{\Delta E_{\max}}{Q_{\max}}
\]

(6)

where: \(m \) – active power coefficient, \(n \) – reactive power coefficient, \(\Delta \omega_{\max} \) – maximum allowed voltage frequency
The instantaneous active power and nominal apparent power of each converter have to be taken into consideration. Based on Fryze power theory, that power can be represented by orthogonal vectors, which lengths are active and reactive power and their vector sum is equal to the apparent power. The reactive power limit for each converter can be calculated:

$$Q_{\text{max}} = \sqrt{S_N^2 - P^2}$$

where Q_{max} is the maximum of possible converter’s reactive power, S_N is the nominal apparent power of converter, P is the instantaneous active power of converter. In this paper the harmonic (distortion) power is neglecting since only resistive-inductive load is considered.

This relation for several converters with different possible nominal apparent powers and equal reactive powers (three converters in this example) can be interpreted graphically in Fig. 5a.

In power balanced system the vector sum of converter’s apparent powers is equal to load apparent power regardless of the power management method, however the algebraic sum of apparent powers is different for each control strategy. As a result, there is possible situation, that sum of converter’s apparent powers is higher than the demand, which may lead to converters operating with maximum apparent power. Furthermore, if control priority is keeping maximum active power, the overload of converter can occur, as it is shown in Fig. 5b for converter 1, what is not acceptable, because it cause disable or damage of this device.

In order to improve the reactive power management and keeping total generated apparent power below maximum level as long as possible, the proposed reactive control algorithm is keeping relation $S_L/\sum S_k$ on the highest level. It will allow better exploitation of each RES in whole microgrid, what can increase possible to active power generation of each converter without reaching of apparent power limit.

When converters are operating with apparent powers much lower than nominal parameters, the above relation is equal one and reactive power is sharing proportional to active power of each converter (Fig. 6a), based on (8).

III. PROPORTIONAL REACTIVE POWER SHARING (PRPS)

A. Development of Proportional Reactive Power Sharing Algorithm

In order to manage reactive power in islanded AC microgrid the instantaneous active power and nominal apparent power of each converter have to be taking into consideration. Based on Fryze power theory, that power can be represented by orthogonal vectors, which lengths are active and reactive power and their vector sum is equal to the apparent power. The reactive power limit for each converter can be calculated:

$$Q_{\text{max}} = \sqrt{S_N^2 - P^2}$$

where Q_{max} is the maximum of possible converter’s reactive power, S_N is the nominal apparent power of converter, P is the instantaneous active power of converter. In this paper the harmonic (distortion) power is neglecting since only resistive-inductive load is considered.

This relation for several converters with different possible nominal apparent powers and equal reactive powers (three converters in this example) can be interpreted graphically in Fig. 5a.

In power balanced system the vector sum of converter’s apparent powers is equal to load apparent power regardless of the power management method, however the algebraic sum of apparent powers is different for each control strategy. As a result, there is possible situation, that sum of converter’s apparent powers is higher than the demand, which may lead to converters operating with maximum apparent power. Furthermore, if control priority is keeping maximum active power, the overload of converter can occur, as it is shown in Fig. 5b for converter 1, what is not acceptable, because it cause disable or damage of this device.

In order to improves the reactive power management and keeping total generated apparent power below maximum level as long as possible, the proposed reactive control algorithm is keeping relation $S_L/\sum S_k$ on the highest level. It will allow better exploitation of each RES in whole microgrid, what can increase possible to active power generation of each converter without reaching of apparent power limit.

When converters are operating with apparent powers much lower than nominal parameters, the above relation is equal one and reactive power is sharing proportional to active power of each converter (Fig. 6a), based on (8).

III. PROPORTIONAL REACTIVE POWER SHARING (PRPS)

A. Development of Proportional Reactive Power Sharing Algorithm

In order to manage reactive power in islanded AC microgrid the instantaneous active power and nominal apparent power of each converter have to be taking into consideration. Based on Fryze power theory, that power can be represented by orthogonal vectors, which lengths are active and reactive power and their vector sum is equal to the apparent power. The reactive power limit for each converter can be calculated:

$$Q_{\text{max}} = \sqrt{S_N^2 - P^2}$$

where Q_{max} is the maximum of possible converter’s reactive power, S_N is the nominal apparent power of converter, P is the instantaneous active power of converter. In this paper the harmonic (distortion) power is neglecting since only resistive-inductive load is considered.

This relation for several converters with different possible nominal apparent powers and equal reactive powers (three converters in this example) can be interpreted graphically in Fig. 5a.

In power balanced system the vector sum of converter’s apparent powers is equal to load apparent power regardless of the power management method, however the algebraic sum of apparent powers is different for each control strategy. As a result, there is possible situation, that sum of converter’s apparent powers is higher than the demand, which may lead to converters operating with maximum apparent power. Furthermore, if control priority is keeping maximum active power, the overload of converter can occur, as it is shown in Fig. 5b for converter 1, what is not acceptable, because it cause disable or damage of this device.

In order to improves the reactive power management and keeping total generated apparent power below maximum level as long as possible, the proposed reactive control algorithm is keeping relation $S_L/\sum S_k$ on the highest level. It will allow better exploitation of each RES in whole microgrid, what can increase possible to active power generation of each converter without reaching of apparent power limit.

When converters are operating with apparent powers much lower than nominal parameters, the above relation is equal one and reactive power is sharing proportional to active power of each converter (Fig. 6a), based on (8).
converter. First condition prevents overloading of converter and the second one must be fulfilled to preserve the balance of reactive power in islanded microgrid.

The relation \(S_L / \sum S_k \) in limited cases is lower than one, but it is keeping on highest possible level (Fig. 6b) providing the best exploitation of RES with maximum active power.

\[
Q_{wk} = \frac{Q_k - P_k}{P_L} \\
P_k^2 + Q_k^2 = S_k^2 \leq S_{NK}^2 \quad \forall k \\
\sum Q_k = Q_L \quad \forall k
\]

where: \(Q_{wk} \) – calculated reactive power value for unlimited case, \(Q_L \) – total reactive power demand, \(P_L \) – total active power, \(P_k \) – active power of “k” converter, \(Q_k \) – reactive power of “k” converter, \(S_k \) – apparent power of “k” converter, \(S_{NK} \) – nominal apparent power of “k” converter.

Based on (8), (9), (10) and described analysis of reactive power sharing novel control algorithm was developed. The flowchart of the algorithm is shown on Fig. 7. In first stage system parameters are saved in K-elements tables, where \(K \) – number of converters, \(P[K] \) – measured active powers, \(S[N][K] \) – nominal apparent powers. Furthermore, limits of reactive powers for each converter \(Q_{maxk} \), as well as total active power \(P_L \) (11) are calculated.

\[
P_L = \sum P_k
\]

In next stage, the auxiliary parameter \(Qsum \), defined as a sum of reference reactive powers of all limited and unlimited converters, is compared with load reactive power. This parameter allows checking if reactive power balance is retained. When \(Qsum \), as a result of stages 3-5 described below is different than total reactive power \(Q_L \), then algorithm is going to stage 3, otherwise the stage 6 fallowed and final referenced values of reactive power \(Qk* \) are defined for each converters.

In stages 3-5 the main calculation process of the reference values is executed. Firstly, the reactive power values proportional to active powers are calculated (stage 3). The proportionality factor is composed of parameters \(Prest \) and \(Qrest \), which are total active and reactive power \(PL \) and \(QL \) in unlimited case, otherwise they are smaller by excluding all active and reactive powers of limited converters (stage 5). Next, the limitation is checked (stage 4) and the reference value is set to maximum or to proportional. Depending on the result, auxiliary parameters \(Qlim, Plim \) or \(Qunl, Punl \) are calculated, which are sums of active and reactive power of converters operating with maximum apparent power or below it correspondingly (stage 4). Then after all \(K \) iterations, the parameters \(Prest, Qrest, Qsum \) are calculated and the algorithm is going back to stage 2, where the condition (10) is checked, as mentioned above.

B. Implementation of developed algorithm

For more extensive microgrid (e.g. number of sources \(K>10 \)), the calculation of final reference values in one common control unit (e.g. SCU) may be long and not be possible, especially if calculations in SCU have to be done in one converter switching period (usually 100-500 \(\mu s \)). Hence, based on Fig. 7 the algorithm can be splitted between all primary control units (PCU) containing inner control loops and secondary control unit (SCU), which is mainly responsible for compensating the voltage amplitude and frequency deviation caused by droop control in PCU.

As a result, the time calculation in SCU may be reduced improving control dynamic and transient time. Proposed implementation of presented algorithm allows executing many processes parallel in PCUs. The block scheme of proposed control algorithm implemented in PCUs and SCU is shown on Fig. 8.

The algorithm calculates the reactive power limit (7) and proportional reactive power value for unlimited cases (8) in each primary control unit independently. Furthermore, the auxiliary parameters \(PSk, QSk \) are defined (11), (12), based on actual reactive power reference value \(Q* \). In order to fulfill condition (10) the additional value of reactive power \(\Delta Q_L \) has to be added to value of unlimited case \(Q_{uk} \) for each unlimited converter. It is defined by (13) and depends on sum of active power of limited converters \(PS_L \), sum of reactive power of limited converters \(QSL \), total active and reactive powers \(PL \) and \(QL \), reactive power value of unlimited case \(QUL \) and auxiliary
parameter Q_{sk}. The parameter ΔQ_k can be different for each k, proportionally to P_k, hence the proportional reactive power sharing for unlimited converters is still satisfied. The final reference values of reactive powers are calculated, when the all conditions (9-10) are fulfilled and the transferred data between PCUs and SCU do not change in next converter switching period. Furthermore, the steady-state of reactive power sharing in microgrid is obtained when the signals from controllers in inner control loops are established. This process may take a few hundred milliseconds, depending on the number of RES.

Another problem in distributed control system is different sampling time for PCUs (usually 5 – 10 kHz) and SCU (it can work with high sampling frequency (e.g. 40 kHz)). These differences will not affect the proper operation of converters in microgrid.

IV. SIMULATION RESULTS

The simulation model was built in Saber Synopsys to verify described solution. The block scheme of simulation model is shown in Fig. 9. The three power converters connected to DC voltage sources (operating as a RES) and converter with storage was included in research. In order to meet the demand of active power the energy storage is unlimited in analysis, what provides the correct balance of active power in islanded microgrid. Furthermore, the line impedances (Z_{L1}, Z_{L2}, Z_{L3}, Z_{L4}) included in Fig. 9 can be neglected in low-voltage microgrid with LCL filters, where the impedances are much lower than filter impedances. In Table I the parameters of simulation model are presented.

The simulation was performed and compared for three different control methods: classical droop control, equal reactive power sharing [22] and proposed proportional power sharing.

![Fig. 8. Block diagram of developed reactive power sharing algorithm in real-time implementation.](image)

![Fig. 9. Block scheme of simulation model](image)
Firstly, the islanded microgrid presented by Fig. 9 was managed by basic droop control, without power management. For reactive power load connected to the microgrid, the uncontrolled reactive power sharing may result the overload of converter, even if the active power will be reduced to minimum. This situation is shown by converter “3” in Fig. 10, where active power p_3 is reduced almost to zero and apparent power S_3 is still higher than nominal value SN_3.

Another drawback of this solution is possible reactive power circulation, as it is presented after 1s in Fig. 10, where the maximum apparent power is limited by nominal converter parameters. Fig. 11 also presents similar situation but without power limitation, where the active power calculated from mppt is changing for converter “2” (p_{mppt_2}) and “3” (p_{mppt_3}). It causes undesirable reactive power sharing in microgrid (the reactive power q_2 start to have capacitive character, what has to be compensated by other converters to keep the balance). Notice, that the reactive powers are equal when the active powers are equal as well (Fig. 11), which result from the proper selection of droop characteristics, but classical droop control cannot avoid the reactive power circulation.

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>SIMULATION MODEL PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Converter 1</td>
<td></td>
</tr>
<tr>
<td>Nominal apparent power</td>
<td>6000 VA</td>
</tr>
<tr>
<td>Inductance L_{11}</td>
<td>2 mH</td>
</tr>
<tr>
<td>Capacitance C_1</td>
<td>10 μF</td>
</tr>
<tr>
<td>Inductance L_{12}</td>
<td>3 mH</td>
</tr>
<tr>
<td>Converter 2</td>
<td></td>
</tr>
<tr>
<td>Nominal apparent power</td>
<td>11000 VA</td>
</tr>
<tr>
<td>Inductance L_{21}</td>
<td>3 mH</td>
</tr>
<tr>
<td>Capacitance C_2</td>
<td>10 μF</td>
</tr>
<tr>
<td>Inductance L_{22}</td>
<td>2 mH</td>
</tr>
<tr>
<td>Converter 3</td>
<td></td>
</tr>
<tr>
<td>Nominal apparent power</td>
<td>3200 VA</td>
</tr>
<tr>
<td>Inductance L_{31}</td>
<td>4 mH</td>
</tr>
<tr>
<td>Capacitance C_3</td>
<td>10 μF</td>
</tr>
<tr>
<td>Inductance L_{32}</td>
<td>5 mH</td>
</tr>
<tr>
<td>Storage Converter</td>
<td></td>
</tr>
<tr>
<td>Nominal apparent power</td>
<td>50000 VA</td>
</tr>
<tr>
<td>Inductance L_{stor1}</td>
<td>4 mH</td>
</tr>
<tr>
<td>Capacitance C_{stor}</td>
<td>10 μF</td>
</tr>
<tr>
<td>Inductance L_{stor2}</td>
<td>4 mH</td>
</tr>
<tr>
<td>Load power</td>
<td></td>
</tr>
<tr>
<td>Active power</td>
<td>21500 W</td>
</tr>
<tr>
<td>Reactive power</td>
<td>6000 Var</td>
</tr>
</tbody>
</table>

Fig. 10. Powers of converters in islanded microgrid without reactive power management with step change of maximum active power from RESs: p_1, p_2, p_3, $p_{storage}$ – converters active powers; p_{mppt_1}, p_{mppt_2}, p_{mppt_3} – maximum active powers calculated from MPPT; q_1, q_2, q_3 – converters reactive powers; S_1, S_2, S_3 – converters apparent powers; SN_1, SN_2, SN_3 – converters nominal apparent powers.

Fig. 11. Powers of converters in islanded microgrid without reactive power management with step change of maximum active power from RESs and unlimited nominal power: p_1, p_2, p_3, $p_{storage}$ – converters active powers; p_{mppt_1}, p_{mppt_2}, p_{mppt_3} – maximum active powers calculated from MPPT; q_1, q_2, q_3 – converters reactive powers;
In Fig. 12 there are presented powers of converters in microgrid with equal reactive power sharing algorithm [22]. In this solution in steady-state operation of converters the reactive powers q_1, q_2, and q_3 are equal independently on active powers. It prevents the reactive power circulation, but as it is shown in Fig. 12 after step change of active power, the equal reactive power of converters causes limitation of active power p_n, in order to not exciting the nominal level of apparent power. Hence, the RES cannot operate with maximum active power, calculated from mppt algorithm [38].

Problems described above can be eliminated by using proportional power sharing algorithm, proposed in this paper. The solution prevents converters to be as reactive power load and provides maximum active powers from RES, keeping apparent power below nominal level as long as possible (Fig. 13).

![Fig. 12. Powers of converters in islanded microgrid with equal reactive power sharing with step change of maximum active power from RESs: p_1, p_2, p_3, p_{storage}.](image)

![Fig. 13. Powers of converters in islanded microgrid without reactive power management with step change of maximum active power from RESs: p_1, p_2, p_3, p_{storage}.](image)

V. CONCLUSIONS

Microgrid is the advance system for RES integration with own control structure. Usually the Hierarchical Control is implemented with Droop Control in primary level. In islanded mode of operation there is the need to manage reactive power sharing and allow RESs work with maximum active power. Hence, the new reactive power sharing algorithm was proposed in this paper, based on the analysis of power sharing between converters in microgrid. The novel solution prevents the reactive power circulation and disconnection or damage of any converter in microgrid. Moreover, it allows to converters operation with MPPT, causing better exploitation of each RES and keeping apparent power of each unit below nominal level as long as possible. Because of short switching period of power electronics converters in RES, the algorithm was developed for implementation in hierarchical control structure, providing parallel calculations in each PCU. Simulation analysis was performed, where the three solutions of power control in islanded microgrid were compared what confirms the correct operation of developed algorithm and shows the advantage of proportional power sharing over others solution presented in literature.

REFERENCES

