
 

  

 

Aalborg Universitet

Anatomy of the six-part all-partition array as used by Milton Babbitt

Preliminary efforts towards a computational method of automatic generation

Bemman, Brian; Meredith, David

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Bemman, B., & Meredith, D. (2014). Anatomy of the six-part all-partition array as used by Milton Babbitt:
Preliminary efforts towards a computational method of automatic generation. Abstract from RMA Music and
Mathematics Study Day, Leeds, United Kingdom. http://rmamusicandmaths.wordpress.com/

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 11, 2024

https://vbn.aau.dk/en/publications/d63a0218-9153-4eb9-b543-9eb647517c06
http://rmamusicandmaths.wordpress.com/


Anatomy of the Six-part All-partition Array 
as used by Milton Babbitt: Preliminary 

Efforts Towards a Computational Method 
of Automatic Generation

!
Brian M. Bemman 

David Meredith 
!

Aalborg University 
Dept. of Architecture, Design and Media Technology 

!
!

RMA Music and Mathematics Study Day 
Saturday, 12 April, 2014 



Intention
• Research represents a preliminary effort at using 

computational methods to automatically generate and parse 
all-partition array structure. 

1. Formally define the internal structures of six-part, all-
partition arrays. 

2. Provide a template representative of the organization of their 
pitch-class structure based on additional formalized 
constraints. 

3. Demonstrate the computational difficulties observed in initial 
attempts to automatically parse all-partition array structures.



1. Background
Some definitions… 

What is an all-partition 
array?



All-combinatorial Hexachords

• All-combinatorial hexachords – 

Let a be         then  a is all-combinatorial iff 

!

         ex.     

AND 

        ex.



Hexachordally Combinatorial Rows

• Hexachordally combinatorial rows, h – 

Let A be       , let B be        and 

Let a be        , let b be       then 

!

A h B iff a = b



Integer Partition vs. Integer Composition
• In number theory, an integer partition is a way of representing an integer n as an unordered 

sum of positive integers. 

When n = 12 

!

• An integer composition is an ordered integer partition. In the above example, these would 
not be equivalent. 

• In an all-partition array, we must include zero in many integer compositions. We call such 
instances, weak integer compositions. 

When n = 12 

!

• All compositions can be trivially considered weak and are also infinitely so. In an all-partition 
array, these are bounded by part with the number of summands corresponding to the 
number of parts. 



1. Background
Some definitions… 

What is an all-partition 
array?

…a twelve-tone structure organized into pairs of hexachordally combinatorial 
rows and then parsed into a sequence of discrete, vertical aggregates by 
distinct integer compositions. 



All all-partition arrays

• Organization based on the principle of h.  
• Implicit feature of h-related rows that their pairing 

forms both linear and vertical aggregates, four in 
total.  

• This structure in music theory is called an array.  
!

!



• A type of row refers to its hexachord content. A row of type           
is constructed from a hexachord       and its complement       and 
is of the same row type as all other           rows. When            , a 
row class contains rows of a different type          and          , 
however,                     under P, I, R, RI.  

• The concatenation of linear aggregates (often but not 
necessarily) of the same row type is referred to as a lyne. 
!

!

!

!
• Lyne pairs are often distinguished from each other by register or 

in the case of pieces for ensemble, by instrument. 
!

!



Set-class membership of 
the D-hexachord• The number of lynes 

in an all-partition 
array is determined 
by the number of 
distinct members of 
its rows' constituent 
hexachords.  
!

• A row class 
constructed from two 
D-hexachords will 
yield six row types of 
eight rows each for a 
total of 48 rows in its 
row class.



One possible composition 
sequence  

• Discrete vertical presentations 
of aggregates are 
distinguished according to the 
partitioning of members from 
each lyne into segments.  

• For an integer partition of 2 + 2 
+ 2 + 2 + 2 + 2, its shorthand 
can be written as 26, where the 
prime denotes segment length 
and exponent denotes parts. 

• When the unordered segments 
in an integer partition are 
distributed by lyne, they 
become ordered and thus 
form an integer composition.



One possible block

• A block is the presentation of the aggregate by all lynes. 

• A six-part array contains 58 distinct integer partitions into eight blocks. 

• Musically, there are just as many ways of articulating block boundaries 
as obscuring them. Nonetheless, block boundaries signal both the 
commencement of new rows and salient structural divisions.



!

!

!

!

!

    

    Integer compositions… 

    26   62



Intention
• Research represents a preliminary effort at using 

computational methods to automatically generate and parse 
all-partition array structure. 

1. Formally define the internal structures of six-part, all-
partition arrays. 

2. Provide a template representative of the organization of their 
pitch-class structure based on additional formalized 
constraints. 

3. Demonstrate the computational difficulties observed in initial 
attempts to automatically parse all-partition array structures.



2. The Anatomy
• Reductionist approach. 

• Concerned less with musical nuance and more with  
finding internal parts and how these are organized 
to produce a unified whole. 

• A formal description of these parts will allow for the 
use of computational methods in analyzing current 
pieces and producing different pieces with the 
same type of structure.



Some Constraints of Six-part Arrays Types
!

• Both the Babbitt array type and Smalley array type fulfill the following basic 
criteria… 

1. Each lyne contains rows of the same type. 

2. Lyne pairs are h related. 

3. All rows are distinct and appear once i.e. hyper-aggregate. 

4. Row classes are divided into two T6 related sections, each containing 24 rows. 

• …But differ structurally by how h-related rows are consistently paired. 

5. A Babbitt array: Four distinct k-combinations where r = 2 (excluding two 
combinations) 

     A Smalley array: Six distinct k-combinations where r = 2 



Babbitt Array Type as Found in Babbitt’s About Time

Complement Transformations T3 and T9 and integer partitions below 



Template Sufficient to Describe All Babbitt Array Types

Found also in Babbitt’s Arie da Capo, Tableaux, Playing for Time, and others (all based on 
different permutations for P0). 



Row pairing constraints by lyne 



Constraints in Sections

Four Distinct k-combinations (excluding {A,B} and {C,D}), 
Non-distinct permutations, Retrograde permutations



Smalley Array Type as Found in Babbitt’s Sheer Pluck 

Complement Transformations, T3 and T9 and integer partitions below



Template Sufficient to Describe All Smalley Array Types

Found also in Babbitt’s Joy of More Sextets (translated with reordered lynes and lyne pairs) and 
Groupwise (with different sequence of integer partitions). 



Row pairing constraints by lyne

Lyne pair pairing constraints by block



Constraints in Sections 

Six Distinct k-combinations, Distinct permutations, 
Non-distinct blocks



Intention
• Research represents a preliminary effort at using 

computational methods to automatically generate and parse 
all-partition array structure. 

1. Formally define the internal structures of six-part, all-
partition arrays. 

2. Provide a template representative of the organization of their 
pitch-class structure based on additional formalized 
constraints. 

3. Demonstrate the computational difficulties observed in initial 
attempts to automatically parse all-partition array structures.



3. Parsing the Pitch-class Structure

• Automating the organization of pitch-class structure 
is relatively straightforward. Parsing it however, is 
not a computationally trivial problem to solve. 

• Babbitt used only two distinct sequences of integer 
compositions (one for each type), why?



Possible Combinations
• The difficulty in parsing this structure can be demonstrated by 

constructing a formula that determines the distinct number of 
possible combinations of internal structure = number of calculations 
required of a program. 

• Given constraints1–3… 

!

!

!

where p is the number of required integer partitions, s is the number 
of lynes, c is the number of lyne pairs (s/2), r is the number of rows in 

a given row type, and t is a constant of the number of distinct rows 
built from a D-hexachord (6! ⋅ 6!).



• With the appropriate values assigned for six-part 
all-partition array… 

!

!

• The value of n is far beyond intractable and the 
culprits are obviously the terms (6!)58 and 58!



Brute force search for possible successful 
integer compositions in Sheer Pluck

Where p is the number of integer partitions, 58, px is the ordinal position of a given 
partition of p, and s is a successful integer composition.



Questions for Future 
Research

• Are there additional constraints in the pitch-class 
structure that will limit the number of calculations 
required in finding successful integer compositions? 

– Yes, there must be. Pitch-class repetition? Type 
inform sequence of compositions? 

• Is it even possible to generate all distinct all-
partitions that exist? 

– Probably not. Greedy algorithm and heuristics?



Acknowledgements

This talk was prepared while working as a Ph.D. fellow on a 
collaborative EU project entitled “Learning to 
Create” (Lrn2Cre8). The Lrn2Cre8 project acknowledges the 
financial support of the Future and Emerging Technologies (FET) 
programme within the Seventh Framework Programme for 
Research of the European Commission, under FET grant 
number 610859 
!


