Testing the effect of different enzyme blends on increasing the biogas yield of straw and digested manure fibers
Njoku, Stephen Ikechukwu; Escobar, Esperanza Jurado; Malmgren-Hansen, Bjørn; Kragelund, Caroline; Ruiz, Begoña; Uellendahl, Hinrich Wilhelm

Publication date: 2014

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: december 01, 2018
Testing the effect of different enzyme blends on increasing the biogas yield of straw and digested manure fibers

S.I. Njoku1, E. Jurado1, B. Malmgren-Hansen2, C. Kragelund3, B. Ruiz3 and Hinrich Uellendahl4*

1 Section for Sustainable Biotechnology, Aalborg University, Copenhagen, A.C. Meyers Vænge 15, DK-2450 Copenhagen, Denmark
2 Danish Technological Institute, Kongsvang Allé 29, DK-8000 Aarhus C, Denmark
3 aiina centro tecnológico, Parque Tecnológico de Valencia c. Benjamin Franklin 5-11, E-46980 Paterna (Valencia), Spain
4*Corresponding author, phone +45 9940 2585, E-mail address: hu@bio.aau.dk

The Re-Injection Loop Concept

In this study, enzymatic treatment was tested to increase the biogas yield of wheat straw (WS) and digested manure fibers (DMF) in the Re-Injection Loop Concept, which combines anaerobic digestion with solid separation to enhance the biogas yield per ton of manure by:

1. Digestion of the easily degradable fraction of manure in the biogas process.
2. Separation of the residual recalcitrant digested fiber fraction project.
3. Ultrasound and/or enzymatic treatment of the digested fiber fraction.
4. Recirculation of the treated fiber fraction into the reactor.

Enzymatic Treatment of WS and DMF

- All tests were conducted in batch tests as separate enzymatic hydrolysis prior to the anaerobic digestion (AD) process. The enzymatic hydrolysis (EH) was performed at the following conditions: T = 50°C, t = 0.5/1.0/72 h, dosage = 0.1/2.5/5.0% g-enzyme/g-TS, 10%TS, pH (adjusted) = pH 5/7, pH (non adjusted) = pH > 8.

- The following enzyme blends were tested:

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Activity</th>
<th>pH range</th>
<th>Temp range (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZ-P</td>
<td>Protease</td>
<td>8.0-10.0</td>
<td>60-70</td>
</tr>
<tr>
<td>ES-C5000P</td>
<td>Neutral cellulase</td>
<td>6.5-8.5</td>
<td>50-70</td>
</tr>
<tr>
<td>ES-CX19K</td>
<td>Cellulase and endo-xylanase</td>
<td>2.5-7.0</td>
<td>40-70</td>
</tr>
<tr>
<td>NZ-Car</td>
<td>Celulase</td>
<td>N/D</td>
<td>N/D</td>
</tr>
<tr>
<td>NZ-CBG</td>
<td>Celulase</td>
<td>4.5-6.0</td>
<td>40-55</td>
</tr>
<tr>
<td>ES-HC</td>
<td>Endo-xylanase</td>
<td>5.0-6.0</td>
<td>50-80</td>
</tr>
<tr>
<td>NZ-CBG1</td>
<td>Celulase</td>
<td>4.0-6.0</td>
<td>50</td>
</tr>
<tr>
<td>ES-LA</td>
<td>β-glucanase & endo-cellulase</td>
<td>4.5-6.0</td>
<td>40-50</td>
</tr>
<tr>
<td>NZ-X</td>
<td>Xylanase</td>
<td>4.5-6.1</td>
<td>50-70</td>
</tr>
<tr>
<td>NZ-BG</td>
<td>β-glucanase</td>
<td>5.0-7.0</td>
<td>50-65</td>
</tr>
<tr>
<td>ES-CX900T</td>
<td>Cellulase + xylanase</td>
<td>6.5-8.0</td>
<td>50-70</td>
</tr>
<tr>
<td>ES-3000L</td>
<td>Celulase</td>
<td>4.0-7.0</td>
<td>30-60</td>
</tr>
<tr>
<td>ES-8000P</td>
<td>Celulase</td>
<td>4.5-6.5</td>
<td>50-60</td>
</tr>
</tbody>
</table>

NZ: enzyme blend from Novozymes A/S, ES: enzyme blend from EnzymeSupplies Ltd.

- The subsequent biomethane potential (BMP) tests were performed at 37°C for 60 days. The inoculum used was taken from Hasheji biogas plant, Denmark, treating manure and industrial organic waste.

- Screening of the different enzymes (50°C, pH 5.0, 72h) on WS showed an increasing effect on the BMP mainly for enzyme blends containing both cellulase and xylanase activity:

- EH (50°C, pH 7.0/5.0, 0.5/72h) using the best performing and low cost enzyme blends (CX900T/3000L) at low dosage (0.1% g-enzymeg/g-TS) had an increasing effect mainly on the BMP of DMF, while the effect on WS was only limited:

- EH with no pH adjustment (pH > 8) and 0.1% dosage showed an increasing effect of the enzyme addition (8000P) compared to treating DMF at 42/50°C without enzymes only for 72h of EH.

Conclusions

- Addition of combined cellulase and xylanase activity showed highest effect to enhance the intrinsic hydrolytic activity of the AD process.
- The relative effect of enzyme addition was higher for DMF with low BMP.
- pH adjustment to pH < 7 showed higher effect of the enzyme addition.

Acknowledgements

Enzyme blends were supplied by Novozymes A/S, Bagsvaerd, Denmark, and EnzymeSupplies Ltd, Oxford, UK. The EU project BIOMAN is funded by the European Union’s Seventh Framework Programme managed by REA - Research Executive Agency: http://ec.europa.eu/research/rea (FP7/2007-2013) under grant agreement no. FP7-SME-2012_315664,”BIOMAN”. www.bioman.dtc.dk