

Aalborg Universitet

Robust Pitch Estimation Using an Optimal Filter on Frequency Estimates

Karimian-Azari, Sam; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

Published in:

2014 Proceedings of the 22nd European Signal Processing Conference (EUSIPCO 2014)

Publication date: 2014

Document Version Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

Karimian-Azari, S., Jensen, J. R., & Christensen, M. G. (2014). Robust Pitch Estimation Using an Optimal Filter on Frequency Estimates. In 2014 Proceedings of the 22nd European Signal Processing Conference (EUSIPCO 2014) (pp. 1557 - 1561). IEEE. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6952551&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxp

ls%2Fabs_all.jsp%3Farnumber%3D6952551

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 09, 2024

Robust Pitch Estimation Using an Optimal Filter on Frequency Estimates

Sep. 4, 2014

Sam Karimian-Azari, Jesper Rindom Jensen, and Mads Græsbøll Christensen {ska, jrj, mgc}@create.aau.dk

> Audio Analysis Lab, AD:MT, Aalborg University, Denmark

Funded by the Villum foundation and DFF-1337-00084

Agenda

Introduction

Harmonic Signal Model Pitch Estimation

The WLS Pitch Estimator

Proposed Method

Problem Formulation
Filtering UFEs
Cramér-Rao Lower Bound

Experimental Results

Conclusion

Robust Pitch Est. Using an Optimal Filter on Freq. Est.

Sam Karimian-Azari et al.

Introduction

Harmonic Signal Model

The WLS Pitch Estimator

Proposed Method

Problem Formulation

Cramér-Rao Lower Bour

Evporimental Beau

nclusion

Introduction

In speech and audio signal processing applications such as:

- ▶ hearing-aids
- ▶ teleconference systems

we can design filters based on parametric models.

Pitch estimate is often necessary in some applications such as:

- ► Coding
- ► Enhancement
- Separation
- ► Compression

Robust Pitch Est. Using an Optimal Filter on Freg. Est.

Sam Karimian-Azari et al.

2) Introduction

Harmonic Signal Model Pitch Estimation

The WLS Pitch Estimator

Proposed Method

Problem Formulation

Filtering UFEs
Cramér-Bao Lower Bour

onclusion

Introduction

Harmonic Signal Model

Harmonic Signal Model:

$$s(n,\theta) = \sum_{l=1}^{L} \alpha_l \, e^{j(\omega_l n + \varphi_l)},$$

$$\boldsymbol{\theta} = [\alpha_1, \varphi_1, \omega_1, \dots, \alpha_L, \varphi_L, \omega_L]^T$$

where $\omega_I = I\omega_0$ (for $I = 1, \ldots, L$),

L: number of sinusoids

 α_I : real magnitudes

 ω_0 : fundamental frequency

 φ_I : phases of harmonics

Robust Pitch Est Using an Optimal Filter on Frea. Est.

Sam Karimian-Azari et al (1)

Harmonic Signal Model

The WLS Pitch

Introduction Pitch Estimation

Existing approaches*:

- ► Filtering Methods: Based on filtering the observed signal that pass power undistorted frequency of harmonics, e.g., optimal adaptive designs.
- ► Subspace Methods: Based on the principles of subspace orthogonality, e.g., MUSIC method
- ► Statistical Methods: Based on maximizing the likelihood function of pitch, e.g., the non-linear least-squares (NLS), and weighted least squares (WLS) [H. Li, P. Stoica, and J. Li 2000].

Robust Pitch Est. Using an Optimal Filter on Freg. Est.

Sam Karimian-Azari et al.

Introductio

Pitch Estimation

The WLS Pitch Estimator

Proposed Method

Problem Formulation

Filtering UFEs

Cramér-Rao Lower Bound

Experimental Results

* [M.G.Christensen and A.Jakobsson 2009]

The Weighted Least Squares (WLS) Parameter Estimator

PROPORE UNIVERSE

[H. Li, P. Stoica, and J. Li 2000]

The observed signal is contaminated by Gaussian noise v(n) with variance of σ^2

$$x(n) = \sum_{l=1}^{L} \alpha_l \, e^{j(\omega_l n + \varphi_l)} + v(n). \tag{2}$$

With the assumption of white Gaussian noise, the WLS pitch estimator yields

$$\hat{\omega}_0 = \frac{1}{\sum_{l=1}^{L} (I \, \hat{\alpha}_l)^2} \sum_{l=1}^{L} I \, \hat{\alpha}_l^2 \, \hat{\omega}_l, \tag{3}$$

where $\hat{\omega}_I$ and $\hat{\alpha}_I$ can be estimated using different methods, e.g., the DFT, MUSIC, ESPRIT, NLS, Capon, and APES.

Robust Pitch Est. Using an Optimal Filter on Freq. Est.

Sam Karimian-Azari et al.

Introductio

Harmonic Signal Model Pitch Estimation

5 The WLS Pitch Estimator

Proposed Method

Problem Formulation

Filtering UFEs

Gramer-Hao Lower Bound

nclusion

The WLS Pitch Estimator

The WLS pitch estimator is **computationally efficient** with good **statistical performance**.

BUT! It is not optimal for cases:

- nonidentical noise variances among harmonics, e.g., colored noise.
- spurious frequency estimates.
- ► missing harmonics.

Robust Pitch Est. Using an Optimal Filter on Freq. Est.

Sam Karimian-Azari et al.

Introduction

Harmonic Signal Model

The WLS Pitch

Proposed Method

Problem Formulation

Filtering UFEs

Cramér-Rao Lower Boun

Experimental Results

Conclusion

Proposed Method

Assumption

At a high narrowband SNR, i.e.,

$$SNR(\omega_l) = \frac{\alpha_l^2}{\sigma^2} \gg 1,$$
 (4)

the harmonic frequency ω_l is perturbed with a real angular noise [S. Tretter 1985]

$$\Delta\omega_I(n) = \frac{v(n)}{\alpha_I} \sin(I\omega_0 n + \varphi_I), \tag{5}$$

which has a normal distribution with zero mean and variance

$$\mathsf{E}\{(\Delta\omega_l)^2\} = \frac{1}{2\,\mathsf{SNR}(\omega_l)},\tag{6}$$

where the white Gaussian noise has a homogeneous power spectrum $\Phi(\omega) = \sigma^2$ across frequencies $\omega \in [0, \pi]$. In general,

$$\mathsf{E}\{(\Delta\omega_l)^2\} = \frac{\Phi(\omega_l)}{2\,\alpha_l^2}.\tag{7}$$

Robust Pitch Est. Using an Optimal Filter on Freq. Est.

Sam Karimian-Azari et al.

Introduction

Pitch Estimation

The WLS Pitch Estimator

Proposed Method

Problem Formulation

Filtering UFEs
Cramér-Bao Lower Bound

Experimental Results

onclusion

Proposed Method

Problem Formulation

We can approximate $x(n) = \sum_{l=1}^{L} \alpha_l e^{j(\omega_l n + \varphi_l)} + v(n)$ like,

$$x(n) \approx \sum_{l=1}^{L} \alpha_l \, e^{j(\omega_l n + \Delta \omega_l(n) + \varphi_l)}. \tag{8}$$

Harmonic frequencies:

$$\mathbf{\Omega} = [\ \omega_1, \ \omega_2, \ \dots, \omega_L\]^T = \mathbf{d}_L \ \omega_0, \tag{9}$$

where $\mathbf{d}_{L} = [1, 2, \dots, L]^{T}$.

Unconstrained frequency estimates (UFEs):

$$\hat{\mathbf{\Omega}} = [\hat{\omega}_1, \ \hat{\omega}_2, \ \dots, \ \hat{\omega}_L]^T$$

$$= \mathbf{\Omega} + \Delta \mathbf{\Omega} = \mathbf{d}_L \ \omega_0 + \Delta \mathbf{\Omega}, \tag{10}$$

where $\Delta \mathbf{\Omega} = [\Delta \omega_1, \Delta \omega_2, \dots, \Delta \omega_L]^T$.

Robust Pitch Est. Using an Optimal Filter on Freq. Est.

Sam Karimian-Azari et al.

ntroduction

Pitch Estimation
The WLS Pitch

Estimator

Proposed Method

Problem Formulation
Filtering UFEs
Cramér-Bao Lower Bound

Experimental Results

Proposed Method Filtering UFEs

Apply a filter $\mathbf{h} \in \mathbb{R}^L$

$$\hat{\omega}_0 = \mathbf{h}^T \hat{\mathbf{\Omega}} = \mathbf{h}^T \mathbf{d}_L \, \omega_0 + \mathbf{h}^T \Delta \mathbf{\Omega}. \tag{11}$$

With the distortionless constraint that $\mathbf{h}^T \mathbf{d}_L = 1$, the mean squared error (MSE) of the unbiased estimator is given by

$$MSE[\hat{\omega}_{0}] = E\{(\hat{\omega}_{0} - \omega_{0})^{2}\}$$

$$= E\{(\mathbf{h}^{T}\Delta\Omega)(\Delta\Omega^{T}\mathbf{h})\} = \mathbf{h}^{T}\mathbf{\Phi}_{\Delta\Omega}\mathbf{h}.$$
 (12)

Robust Pitch Est. Using an Optimal Filter on Freq. Est.

Sam Karimian-Azari et al.

Introduct

Harmonic Signal Model Pitch Estimation

The WLS Pitch Estimator

Proposed Method

Problem Formulatio

Filtering UFEs

Cramér-Rao Lower Bound

Experimental Results

Proposed Method

Formulation

Independent UFEs would be implicitly uncorrelated, i.e., $E\{\Delta\omega_i\Delta\omega_k\}=0$ for $i\neq k$, when harmonics are well-separated and the narrowband SNRs are high enough;

$$\begin{split} & \Phi_{\Delta\Omega} = \mathsf{E}\{\Delta\Omega \, \Delta\Omega^T\} \\ & = \mathsf{diag}\Big\{ \Big[\frac{\Phi(\omega_1)}{2 \, \alpha_1^2}, \, \frac{\Phi(\omega_2)}{2 \, \alpha_2^2}, \, \dots, \, \frac{\Phi(\omega_L)}{2 \, \alpha_L^2} \, \Big] \Big\}. \end{split} \tag{13}$$

In practice:

$$\boldsymbol{\Phi}_{\Delta\Omega} = \mathsf{E}\{(\boldsymbol{\hat{\Omega}} - \mathsf{E}\{\boldsymbol{\hat{\Omega}}\})(\boldsymbol{\hat{\Omega}} - \mathsf{E}\{\boldsymbol{\hat{\Omega}}\})^T\}, \tag{14}$$

where $\mathsf{E}\{\cdot\}$ is the mathematical expectation, and

$$\mathsf{E}\{\hat{\Omega}(n)\} = \frac{1}{M} \sum_{m=0}^{M-1} \hat{\Omega}(n-m). \tag{15}$$

Robust Pitch Est. Using an Optimal Filter on Freq. Est.

Sam Karimian-Azari et al.

Introduct

Pitch Estimation

The WLS Pitch Estimator

Proposed Method

10) Filtering UFEs

Cramér-Rao Lower Bound

Experimental Results

Proposed Method Filtering UFEs

(16)

(17)

(18)

Optimal filter is given as the solution to

$$\label{eq:min_h} \min_{\mathbf{h}} \quad \mathbf{h}^T \mathbf{\Phi}_{\Delta\Omega} \mathbf{h}$$
 subject to
$$\mathbf{h}^T \mathbf{d}_L = 1$$

Minimum variance distortionless response (MVDR):

$$\mathbf{h}_{\mathsf{MVDR}} = \mathbf{\Phi}_{\Delta\Omega}^{-1} \mathbf{d}_{L} (\mathbf{d}_{L}^{T} \mathbf{\Phi}_{\Delta\Omega}^{-1} \mathbf{d}_{L})^{-1}.$$

$$\Downarrow$$

Maximum likelihood (ML):

Assuming white Gaussian noise with the variance σ^2

$$\mathbf{\Phi}_{\Delta\Omega}^{-1} = \frac{2}{\sigma^2} \operatorname{diag} \Big\{ [\alpha_1^2, \alpha_2^2, \dots, \alpha_L^2] \Big\},$$

$$\mathbf{h}_{\text{ML}} = \frac{1}{\sum_{l=1}^{L} (|\alpha_{l}|)^{2}} [\alpha_{1}^{2}, 2\alpha_{2}^{2}, \dots, L\alpha_{L}^{2}]^{T}.$$

Robust Pitch Est. Using an Optimal Filter on Freg. Est.

Sam Karimian-Azari

Introduct

Harmonic Signal Mode Pitch Estimation

The WLS Pitch Estimator

Proposed Method

Filtering UFEs

Cramér-Rao Lower Bound

Experimental Results
Conclusion

Proposed Method Cramér-Rao Lower Bound

Asymptotic phase estimates of harmonics at $n \in [0, N-1]$:

$$\hat{\mathbf{\Psi}}(n) = \mathbf{d}_L \omega_0 n + \mathbf{\Xi}_L + \Delta \mathbf{\Omega}(n) \tag{19}$$

Likelihood Function:

$$P(\hat{\Psi}, \xi) \sim \mathcal{N}(\mathbf{d}_L \,\omega_0 + \Xi_L, \mathbf{\Phi}_{\Delta\Omega})$$
 (20)

where
$$\boldsymbol{\xi} = [\omega_o, \boldsymbol{\Xi}_L]^T$$
 and $\boldsymbol{\Xi}_L = [\varphi_1, \varphi_2, \dots, \varphi_L]^T$.

CRLB of pitch estimate:

$$[\mathbf{I}(\xi)^{-1}]_{1,1} = \frac{12}{N(N^2 - 1)} (\mathbf{d}_L^T \mathbf{\Phi}_{\Delta\Omega}^{-1} \mathbf{d}_L)^{-1}, \tag{21}$$

where $I(\xi) = -E\{\frac{\partial^2 \ln p(\Psi, \xi)}{\partial \xi \partial \xi^T}\}$ is the Fisher information matrix.

Robust Pitch Est. Using an Optimal Filter on Freq. Est.

Sam Karimian-Azari et al.

ntroduction

The WLS Pitch

Proposed Method

Problem Formulation

Cramér-Rao Lower Bound

Experimental Results
Conclusion

Experimental Results

Experiment 1 (synthetic signal)

A synthetic harmonic signal $\omega_0=0.15\pi$, L=5 sinusoids with identical amplitudes. We estimated UFEs from N=60 samples using the subspace orthogonality method based on the MUSIC method.

► Additive colored Gaussian noise, different SNR:

Robust Pitch Est. Using an Optimal Filter on Freg. Est.

Sam Karimian-Azari

Introduction

Harmonic Signal Model
Pitch Estimation

The WLS Pitch

Proposed Method

Problem Formulation

Filtering UFEs

3 Experimental Results

Conclusion

Experimental Results Experiment 2 (synthetic signal)

Using an Optimal Filter on Frea. Est.

Sam Karimian-Azari et al.

The WLS Pitch

Experimental Results

▶ White Gaussian noise in SNR= 5 dB, different ω_0 :

Experimental Results

Experiment 3 (real signal)

- A trumpet signal contaminated by colored Gaussian noise, $f_s = 8.0 \text{ kHz}$, N = 128
- ► We estimated *L* using the subspace orthogonality method [M.G.Christensen et al. 2007]

Robust Pitch Est. Using an Optimal Filter on Freq. Est.

Sam Karimian-Azari et al.

stroduction

Harmonic Signal Model

The WLS Pitch

Proposed Method

Problem Formulation

Filtering UFEs
Cramér-Rao Lower Boun

Experimental Results

Conclusion

Summery and Conclusion

 We estimated pitch from unconstrained frequency estimates (UFEs).

 We designed an optimal filter based on noise statistics which is estimated from UFEs.

- ► The optimal filter design is a general method that we can derive the WLS pitch estimator.
- ► Pitch estimation using the optimal filter is robust against different noise situations, e.g., colored noise.
- Pitch estimation using the optimal filter is robust against missing harmonics in some time-frames and outperforms the WLS pitch estimator.

Robust Pitch Est. Using an Optimal Filter on Freq. Est.

Sam Karimian-Azari et al.

Introduction

Harmonic Signal Model
Pitch Estimation

The WLS Pitch Estimator

Proposed Method

Problem Formulation

Cramér-Rao Lower Boun

Aponinontal Hose

Thank you!

