Kalman-Filter-Based State Estimation for System Information Exchange in a Multi-bus Islanded Microgrid

Yanbo Wang*, Yanjun Tian†, Xiongfei Wang‡, Zhe Chen†, Yongdong Tan*

*Southwest Jiaotong University, China, †Aalborg University, Denmark. ywa@et.aau.dk

Keywords: state estimation, information exchange, islanded microgrid, droop control.

Abstract

State monitoring and analysis of distribution systems has become an urgent issue, and state estimation serves as an important tool to deal with it. In this paper, a Kalman-Filter-based state estimation method for a multi-bus islanded microgrid is presented. First, an overall small signal model with consideration of voltage performance and load characteristic is developed. Then, a Kalman-Filter-Based state estimation method is proposed to estimate system information instead of using communication facilities, where the estimator of each DG unit can dynamically obtain information of all the DG units as well as network voltages just by local voltage and current itself. The proposed estimation method is able to provide accurate states information to support system operation without any communication facilities. Simulation and experimental results are given for validating the proposed small signal model and state estimation method.

1 Introduction

Distributed power systems, combing distributed generator (DG) units, local loads and energy storing devices, received an increasing attention in recent years. Microgrid[1], for instance, is presented as a small scale distributed power system to provide power to local loads. In general, a microgrid is allowed to operate either in a grid-connected mode or an islanded mode [2].

For islanded microgrids, distribution management system (DMS) performing monitoring, analysis and control has become an urgent issue[3]. The complexity and dynamic nature of islanded microgrids makes it difficult to monitor and manage the whole system. Generally, communication facilities are employed to support monitoring and management in islanded microgrids. For instance, it is used for state monitoring [4], power quality control [5] and optimal management [6], etc. However, communication facilities tend to bring side effects due to the data drop-out and latency [7], which thus makes islanded operation less reliable and ineffective. Besides, distribution management system (EMS) requiring communication links are relatively expensive.

To lessen the communication system burden, state estimation methods [3-4] are presented to obtain system information. It would be dramatically beneficial to support monitoring and control of islanded microgrids towards a more reliable and flexible operation. However, communication links are still required to support state estimation process (even if low bandwidth communication) in these conventional state estimation methods [3-4].

In addition, system dynamic model is particularly essential for state estimation implementation. Small signal model of islanded microgrids is available to represent system dynamic responses under load disturbances [8]. Previous small signal model of a stand-alone microgrid have been established in [9]. The small signal dynamic model considering active and reactive power management strategies is presented in [6], which is developed to examine system sensitivity to parameters variation. A systematic small signal model of islanded microgrids, including DG units, power controllers, network dynamic as well as load performances, has been proposed in [8]. However, the virtual resistors, which are assumed between each node and ground for defining network voltages, may lead to an inaccurate small signal network model and thus voltage responses may not be considered accurately. Besides, it has a negative influence on dynamic stability of the system.

To estimate system information accurately, a small signal model of islanded microgrid with a consideration of network voltage dynamic and load characteristic is first proposed. Then, a Kalman-Filter-Based state estimation method without communication facilities is developed to obtain system information according to the proposed small signal model. The proposed estimator of each DG unit can obtain dynamic responses of all the DG units as well as network voltages just through local voltage and current itself without any communication facilities.

2 State estimation in microgrid

State estimation methods have received plenty of attentions in distribution systems [10]. Fig.1 illustrates state estimation scheme with communication infrastructure in distribution management system [3-4] (DMS). In detail, an autonomous state estimation method [3] is presented to implement monitoring and analysis of distribution systems. A multi-microgrid state estimator based on conventional weight least square algorithm is proposed in [11]. A Belief Propagation-Based state estimator of distribution system is adopted to lessen communication system burden in [12]. However, communication facilities are required to support state estimation process. In particular, when various DG units and
loads are located far away from each other, the fixed communication infrastructures make islanded microgrids less flexible and reliable. In [13], an independent local Kalman state estimation approach is presented, which is based on local models of power network associated with a virtual disturbance model without communication facilities. But it is difficult to estimate network voltages and states of all the DG units. To deal with the issue, this paper proposes a communication-less state estimation method for islanded microgrids.

3 The proposed state estimation method

The proposed state estimation scheme is based on small signal model. As shown in Fig.2, distributed state estimator (DSE) of each DG unit acquires local voltage and current from data acquisition (DA) unit and estimates system information. The analysis and control procedures are out of the range of this paper. The main benefit of the proposed method is that DG units are completely independent with each other and no communication links are needed.

3.1 Small signal model of islanded microgrids

In the section, the small signal model of distributed generator (DG) is represented by a controllable voltage source, assuming current controller and voltage controller have much faster speed than power controller. Fig.3 depicts a small signal model diagram of an islanded microgrid configuration combining DG units, network and loads.

![Small signal model of an islanded microgrid](image)

In the section, the small signal model of distributed generator (DG) is represented by a controllable voltage source, assuming current controller and voltage controller have much faster speed than power controller. Fig.3 depicts a small signal model diagram of an islanded microgrid configuration combining DG units, network and loads.

\[
P_i = \frac{\omega_p}{s + \omega_p} (V_{ref, q, i} + V_{eq, q, i})
\]

Further, conventional active power-frequency droop, reactive power-voltage droop control method for paralleled inverters operation [8-9] can be written as (2):

\[
\omega_p = \omega_p^r - m_p P_i
\]

Then, output current of DG unit can be represented as

\[
d_{i, ref} = -\frac{R_i}{L_i} i_{ref} - \omega_{i, ref} + \frac{1}{L_i} V_{ref, q}
\]

Small signal dynamics of individual inverter can be represented in a general standard state space form by combining and linearizing (1)-(3):

\[
\Delta x_{inst} = A_{inst} \Delta x_{inst} + B_{inst} \Delta V_f
\]

where \(A_{inst} = \begin{bmatrix} \Delta \delta_i, \Delta \delta_k, \Delta q_i, \Delta q_k, \Delta V_i, \Delta V_k \end{bmatrix} \), \(\Delta V_f = \begin{bmatrix} \Delta V_i, \Delta V_q \end{bmatrix} \)

\(i = 1,2; k = 1,2 \) - \(\omega_p\) is rotating angle frequency of ith DG unit; \(V_{ref, i, q}, V_{ref, q, i}\) are output voltage and current on individual frame (d-q); \(P_i, Q_i\) are average active and reactive power; \(m_p, n_q\) are droop coefficient of active power and reactive power. \(A_{inst}, B_{inst}\) are parameters matrixes of individual inverter. The detail modelling procedures of DG units can be referred in [8].
3.2 The proposed small signal network model

First, network and loads dynamic can be linearized and represented on common frame (DQ) according to KCL as (5):

$$\begin{align*}
\Delta I_{a_{\text{DC}}} & = A_{\text{net}} \Delta I_{a_{\text{DQ}}} + B_{\text{net}} \Delta I_{a_{\text{DQ}}} + B_{L} \Delta I_{a_{L}} \\
\Delta I_{a_{\text{AC}}} & = B_{\text{net}} \Delta I_{a_{\text{DQ}}} + B_{L} \Delta I_{a_{L}}
\end{align*}$$

(5)

To avoid the negative influence of virtual resistor defining network voltages in [8], the network voltages are expressed as linear combination of system states according to KCL as (6), shown in Fig.3.

$$\begin{align*}
\Phi_{v} & = R_{\text{load}} (i_{L} + i_{\text{load}}) + L_{d_{\text{load}}} \frac{d(i_{L} + i_{\text{load}})}{dt} \\
\Phi_{v} & = R_{\text{load}} (i_{L} + i_{\text{load}}) - L_{d_{\text{load}}} \frac{d(i_{L} + i_{\text{load}})}{dt} \\
\Phi_{v} & = R_{\text{load}} (-i_{L} - i_{\text{load}}) + L_{d_{\text{load}}} \frac{d(-i_{L} - i_{\text{load}})}{dt}
\end{align*}$$

(6)

Now, the small signal voltage equations can be obtained as (7) by transforming (6) on common frame (DQ) and combining (12), (13) and (14) as follows:

$$\begin{align*}
V_{\text{DC}} & = C_{1} [x_{\text{DC}}] + C_{2} [\Delta I_{a_{\text{DQ}}}^{\text{net}}] + C_{3} [\Delta I_{a_{\text{DQ}}}^{\text{net}}] \\
C_{1}, C_{2}, C_{3} & \text{are voltage parameter matrices, } A_{\text{net}}, B_{\text{net}}, B_{\text{load}} \text{are lines and loads parameters matrixes; } i_{\text{load}} \text{are unknown disturbances, which depicts the influence of disturbances on equilibrium state of an islanded microgrid.}
\end{align*}$$

(7)

Finally, an overall model including inverters, loads, network by combining (4),(5) and (7) can be rewritten as:

$$\begin{align*}
\Delta x = & A \Delta x + B \Delta x_{\text{in}} \\
\Delta y = & C \Delta x + D \Delta x_{\text{in}}
\end{align*}$$

(8)

where Δx is overall state vector of whole microgrid, $\Delta x = [\Delta x_{\text{ac}}, \Delta x_{\text{in}}, \Delta x_{\text{load}}, \Delta x_{\text{lin}}, \Delta x_{\text{load}}, \Delta x_{\text{in}}]$, A, B, C, D are system parameters matrixes. To allow a simpler representation, sign Δ in small signal model is omitted in the following contents.

3.3 The proposed Kalman-Filter-based state estimation

System dynamic responses under load disturbances can be described in a discrete state space form according to (8) as follows:

$$\begin{align*}
x(k + 1) & = A_{x} x(k) + B_{x} i_{\text{dis}}(k) \\
y_{m}(k) & = C_{m} x(k) + D_{m} i_{\text{dis}}(k) \\
y_{m}(k) & = C_{m} x(k) + D_{m} i_{\text{dis}}(k)
\end{align*}$$

(9)–(11)

where (9) is an extended model combining small signal model with disturbance model and measurement noises. (9)–(11) is well-established relationship between measured output $y_{m}(k)$, system states $x(k)$, disturbance inputs $i_{\text{dis}}(k)$ and measurement noise $n(k)$, where $n(k)$ is added to measured output for imitating sensor noise and environment disturbance.

In fact, internal states contain adequate operation information of the whole system, which provides possibility to reconstruct desired states according to the measured states. State estimation equation is given by [14]

$$\begin{align*}
x(k|k) & = x(k|k - 1) + K (y_{m}(k) - y_{m}(k|k - 1))
\end{align*}$$

(12)

K is the Kalman gain, which is the solution of Ricatti matrix equation. Estimated output and state update equation are given as (13) and (14):

$$\begin{align*}
y_{m}(k|k - 1) & = C_{m} x(k|k - 1) \\
x(k|k) & = A_{x} x(k|k - 1) + B_{x} i_{\text{dis}}(k)
\end{align*}$$

(13) and (14)

These estimated states are updated continuously via update of measured output voltage and current of each DG unit. Then, state estimation equations of each DG unit can be obtained by combing (12), (13) and (14) as follows:

$$\begin{align*}
x(k + 1|k) & = A_{x} x(k|k - 1) + B_{x} y_{m}(k) \\
y_{m}(k + 1|k) & = C_{m} x(k + 1|k - 1)
\end{align*}$$

(15) and (16)

where $A_{i} = A - A^{*}K_{C}C_{m}, B_{i} = A^{*}K_{C}$, C_{m}, C_{m} are measured and unmeasured output matrixes, respectively.

(1) DG units state estimation.

To be exact, for ith DG unit, local states vector $y_{m}(i)(k) = [y_{m}, i_{\text{dis}}, i_{\text{in}}]^{T}$ is defined as measured output, while other units’ state vector $y_{m}(j)(k) = [y_{m}, i_{dis}, i_{in}]^{T}, j \neq i$ is defined as unmeasured output. The principle of DG unit estimator is shown in Fig.4.

Fig.4. The proposed DG units estimator

(2) Network voltage estimation.

Similarly, network voltages also can be estimated by the proposed method. For ith DG, local state vector $y_{m}(i)(k) = [y_{m}, i_{\text{dis}}, i_{\text{in}}]^{T}$ is still viewed as measured output, while network voltages $y_{m}(i)(k) = [y_{m}, i_{\text{dis}}, i_{\text{in}}]^{T}$ is still viewed as measured output. The principle of network voltage estimator is shown in Fig.5. And voltage estimation output equation can be represented as (18)

$$\begin{align*}
y_{m}(i|k - 1) & = C_{m} x(k|k - 1) \\
y_{m}(i|k - 1) & = V_{i}(k|k - 1) \\
\end{align*}$$

(18)
Then, DG units can dynamically estimate system information just by local voltage and current itself.

4 Simulation and Experimental Verification

To verify correctness and effectiveness of the proposed small signal model and state estimation method, the simulations in MATLAB/SIMULINK and experiments have been carried out respectively on a three phase 50Hz prototype islanded microgrid. As depicted in Fig.6, the experiment setup is composed of two inverters in parallel operation, three RL loads and a RL disturbance load. Also, the photograph of the laboratory setup is shown in Fig.7.

4.1 Small signal model considering voltage dynamic.

To validate the proposed small signal model, a disturbance load(R=10Ω, L=50mH) is exerted at bus2 as shown in Fig.6. The simulation results are illustrated in Fig.8 and Fig.9.
To validate the proposed network voltage estimator, disturbance load (R=10, L=50mH) is exerted at bus2 at 0.8s. In accompanying experiment, the system is disturbed deliberately by load (R=10, L=110mH) at bus2 at 3s.

Fig.10. The simulation results for DG unit state estimation. Fig.10.(a)-(b) shows simulation results about active power current and reactive power current responses of DG2 from DG1 estimator, and Fig.11.(a)-(b) depicts experimental results about current responses of DG2 from DG1 estimator. Similarly, Fig.10.(c)-(d) depicts estimated states of DG1 from DG2 estimator, and experimental results about estimated currents responses of DG1 are given in Fig.11.(c)-(d). It can be seen obviously that the currents responses of DG1 and DG2 from estimators nearly match with real counterparts in both simulations and experiments. The tight correspondence between simulated and experimental results can be noted. Hence, the correctness and effectiveness of the proposed DG estimators is confirmed.

4.3 The proposed network voltage estimator.
To validate the proposed network voltage estimator, disturbance load (R=10, L=50mH) is exerted at bus2 at 0.8s. In accompanying experiment, the system is disturbed by the load (R=10, L=110mH) at 4s.

Fig.12. The simulation results for network voltage estimation.
(d) Reactive power current of DG1

Fig.11. The experimental results for DG unit state estimation.

Fig.11.(a)-(b) shows simulation results about active power current and reactive power current responses of DG2 from DG1 estimator, and Fig.11.(a)-(b) depicts experimental results about current responses of DG2 from DG1 estimator. Similarly, Fig.10.(c)-(d) depicts estimated states of DG1 from DG2 estimator, and experimental results about estimated currents responses of DG1 are given in Fig.11.(c)-(d). It can be seen obviously that the currents responses of DG1 and DG2 from estimators nearly match with real counterparts in both simulations and experiments. The tight correspondence between simulated and experimental results can be noted. Hence, the correctness and effectiveness of the proposed DG estimators is confirmed.

4.3 The proposed network voltage estimator.
To validate the proposed network voltage estimator, disturbance load (R=10, L=50mH) is exerted at bus2 at 0.8s. In accompanying experiment, the system is disturbed by the load (R=10, L=110mH) at 4s.
the proposed estimators can estimate system responses correctly and effectively to represent system dynamic responses; results show that (1) the proposed small signal model is effective at bus1 and bus3. Simulation and experimental results from DG2 estimator are shown in Fig.12.(c)-(d) and Fig.13.(c)-(d). It can be seen that the proposed estimators can estimate network voltages change effectively and thus provide information exchange without communication facilities.

5 Conclusion

In this paper, a Kalman-Filter-Based state estimation method for an islanded microgrid is presented, which is able to perform information exchange without any communication facilities. First, a small signal model considering voltage performance is developed. Then, a Kalman-Filter-Based state estimation method is exploited to perform information estimation. The local estimator of each DG unit can obtain dynamically voltage and current of all the DG units as well as network voltages information. Simulation and experimental results show that (1) the proposed small signal model is correct and effective to represent system dynamic responses; (2) the proposed estimators can estimate system responses effectively and thus provide information exchange for supporting system operation.

Acknowledgements

The authors would like to thank for funding from China scholarship Council and the Danish Council for Strategic Research for providing the financial support for the project “Development of a Secure, Economic and Environmentally-friendly Modern Power Systems” (DSF 09-067255).

References