

Aalborg Universitet

Simulating Small-Scale Object Stacking Using Stack Stability

Kronborg Thomsen, Kasper; Kraus, Martin

Published in:
Poster Paper Proceedings of the 23rd International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG 2015)

Publication date:
2015

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Kronborg Thomsen, K., & Kraus, M. (2015). Simulating Small-Scale Object Stacking Using Stack Stability. In V.
Skala (Ed.), Poster Paper Proceedings of the 23rd International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision (WSCG 2015) (pp. 5-8). Vaclav Skala - UNION Agency.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 06, 2024

https://vbn.aau.dk/en/publications/dc0ea2a9-7cee-49b1-9904-161204e0eb13

Simulating Small-Scale Object Stacking
Using Stack Stability

Kasper Kronborg Thomsen
Aalborg University

Department AD:MT
Rendsburggade 14

Denmark, 9000 Aalborg
kasperkronborgthomsen@gmail.com

Martin Kraus
Aalborg University

Department AD:MT
Rendsburggade 14

Denmark, 9000 Aalborg
martin@create.aau.dk

ABSTRACT
This paper presents an extension system to a closed-source, real-time physics engine for improving structured
stacking behavior with small-scale objects such as wooden toy bricks. The proposed system was implemented and
evaluated. The tests showed that the system is able to simulate several common stacking scenarios, which the base
physics engine cannot simulate.

Keywords
Simulation, object stacking, engine extension, game physics.

1 INTRODUCTION
The real-time simulation of dense structure stacking in
game physics engines is a challenging research topic
with many applications in video games and virtual real-
ity simulators. In this paper, stacking refers to dense
structured stacking as seen when creating deliberate
structures. Our main focus is on the simulation of stack-
ing of small-scale objects, which is particularly chal-
lenging because gravitational acceleration is relatively
large compared to the size of these objects. To achieve
a real-time simulation of such stacking scenarios, we
propose a correction system for a closed-source physics
engine, namely the Nvidia physics engine that is inte-
grated in the Unity game engine.

2 PREVIOUS WORK
A widely cited paper on stacking objects in a physics
engine was presented by Erleben [Erleben, 2007]. His
approach uses a standard collision detection algorithm
but includes its own complementarity formulation,
solver and error correction algorithms. The paper dis-
cusses an error correction scheme that is partially based
on stack layers derived from the contacts of objects.
The method proposed by Erleben was compared to
several other physics engines and performs better on all

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

stacking scenarios while still running at near real-time
speeds. His publication showed that using the structure
of a stack has to some extend been considered before
and is a viable approach.

A slightly more recent paper by Kaufman et al.
[Kaufman et al., 2008] focuses on accurately simulat-
ing friction and enabling friction-dependent behavior.
Their method is usable in both rigid and deformable
bodies’ simulation. Although not the main focus,
their system can simulate stacking scenarios that are
friction-dependent in near real time. However, it does
not construct stable structures during simulation. This
paper demonstrates that simulating correct friction
behavior supports a system’s ability to simulate more
stacking scenarios, in particular a cardhouse stack. This
scenario is interesting because it is mainly dependent
on friction to remain stable.

Hsu and Keyser [Hsu and Keyser, 2010] describe an ap-
proach to improve the performance of random stacks
in simulation. The contribution of this paper is an ad-
vanced object sleep paradigm. By forcing objects into
an object sleep state, depending on pile specific con-
ditions, more realistic pile behavior is achieved. The
algorithm runs at real time and can even provide slight
performance improvements. Although the authors have
implemented the algorithm inside a physics engine, this
approach should be able to function independently of
the underlying physics engine. The approach is simi-
lar to the one describe in the present paper. The system
proposed by Hsu and Keyser is, however, only meant to
simulate random stacks.

A more recent paper by the same authors
[Hsu and Keyser, 2012] presents a method to sta-

belise stacks by adding constraints between objects
based on local equilibrium. The algorithm periodically
revises the grouping and removes objects from groups
if objects are no longer in equilibrium or are impacted
by fast objects. The system is designed to allow for
art-directed stacking, but not necessarily realistic
stacking; however, the system cannot create stacks that
are massively unstable. It was tested on both structured
stack and random stack scenarios. The system is able to
maintain stacks created before simulation, but it is not
clear if the system can handle stacks that are created
during simulation as this scenario was not shown. The
system runs at real-time to near real-time speed. It is
the closest prior work to what is proposed in the present
paper. However, the system uses the Bullet physics
library, an open source engine, thus the authors have
access to the source code even though it is claimed to
work as a general extension. The method presented by
the present paper uses a closed-source engine; thus,
only API calls are possible. The system described by
Hsu and Keyser [Hsu and Keyser, 2012] uses grouping
of objects as the main method of generating stable
stacks whereas the method proposed by the present
paper uses object sleep state to create stacks. The focus
of Hsu and Keyser [Hsu and Keyser, 2012] is artistic
control over stacks, whereas the focus of the present
paper is stack simulations under user control.

A paper by Han et al. [Han et al., 2013] sets out to test
two commonly used hypotheses in physics animation.
The first is that users are unable to perceive distortions
in the simulation that are due to approximated simula-
tion methods. The second hypothesis is that freezing
transformations of objects in a random pile does not af-
fect the visual plausibility of a simulation. Both hy-
potheses are confirmed in a user study. This paper rep-
resents one of the rare instances where alternate simula-
tion methods are tested on users for visual plausibility.

One common feature of all the papers proposing new
simulation methods is that these are not demonstrated to
work on small object scale while our system is designed
specifically for small scales as they are characteristic
for toy bricks.

3 METHOD
As the proposed method is an extension of a physics en-
gine, objects will start under the control of the physics
engine. If an object is detected to be in a stable config-
uration, the object stability system will freeze it in the
physics engine and take over stability calculations. If
unstable configurations are detected, the object stability
system will wake up the object and the physics engine
will then simulate the object until it again returns to a
stable configuration.

For every frame, new contacts must be found and any
potential new additions to the stack of frozen objects

must be tested, the state of the stack must be updated
and the overall stability of the stack must be tested.
Firstly, all contacts are added to the data structure of
the system, then all contacts between two objects that
are both in unstable positions are removed as they can-
not be resting on a part of the stack. Contacts com-
ing from impacts above a certain speed are also disre-
garded. Contact areas between stable and potentially
stable objects are then calculated based on the remain-
ing contact points. Using these contact areas potential
objects are tested for stability, and if they are in a stable
configuration, they are added to the stack. The system
then updates stability data through the stack. Lastly, the
stack is tested for overall stability. This is done by cal-
culating the centre of mass for all objects above each
object, and testing if the vertical projection of this cen-
tre of mass is outside of the main contact area of the
object. If it is then the object and everything above it is
woken up and flagged as unstable.

The contact area between two objects is found by gen-
erating the convex hull of the projections of the contact
points between the two objects onto the ground plane.
To test the stability of a single object, a vertical ray is
cast from the centre of mass of the object. If the ray hits
the contact area, the object is considered stable.

For more than one object stacked above another object,
different types of stack branching have to be consid-
ered. The simplest form of branching is a single branch,
where objects are stacked on top of each other one at
a time, thus only one object rests on another object.
To calculate the stability of this stack, objects above a
given object must be taken into consideration when cal-
culating stability. To this end, the centre of mass of an
object and all objects stacked on top of it is defined as
Cstack, which is calculated using Equation 1 where Cobj
is the centre of mass for the object, mobj is the mass of
the object, Cstack,above is Cstack for the stack above the
current object and mstack,above is the mass of the stack
above the current object. Analogously, mstack is the
mass of the stack calculated by Equation 2.

Cstack =

(
Cobjmobj

)
+(Cstack,abovemstack,above)

mobj +mstack,above
(1)

mstack = mobj +mstack,above (2)

Two types of multi-branch stacking are distinguished.
One is split branching, where multiple objects rest on
one object. This case is handled similarly to the sin-
gle branch case, except that Equations 1 and 2 are used
for every object resting on the current object. The sec-
ond type of branching is merge branching. In this case
an object rests on more than one object. For a more
clear explanation, the object above the one being up-
dated will be denoted object A. For merge branching

Figure 1: The two object merge-branching case. The bottom
right object is being updated.

there are three different cases. The first case is that the
entire weight of the stack and object A can be supported
by a single object. This is true if the Cstack of object A is
within one of the individual contact areas. This is tested
similarly to the single object stability, but using the in-
dividual contact areas instead of the combined contact
area. If this is true, the entire weight of object A will
be on this supporting object. If the supporting object
is the object being updated, it will be updated similarly
to the single case. If it is not, no update of data will
be made (if there are also other objects resting on the
object, these will update normally). The second case is
that object A is resting on more than two objects. In this
case the update is done similarly to the single branch
case but the mass mstack of object A for the calculations
is reduced to a fraction matching the number of objects
it rests on.

The last case is that object A is resting on two objects.
In this case, the distribution between the two supports
is calculated. The calculation is based on the setup
depicted in Figure 1. The assumption is that gravity
would cause a torque around the pivot point at the other
support object as if the supporting object that is being
updated was not present. The equivalent force of this
torque would be exerted on the supporting object that is
being updated and can be recalculated as a weight. This
assumption goes both ways, and generates the distribu-
tion of mass.

The pivot point is the contact point closest to Cstack. The
torque exerted on this point by gravity is calculated us-
ing Equation 3.

T =
(
Cstack−Ppivot

)
×G (3)

Where T is the torque, Ppivot is the pivot point, and G is
the gravitational force.

From the torque a force F on the other contact area can
be calculated. Using Equation 4, and rearranging it, the
downwards force equating the torque can be calculated,
and the equation used in the implementation is shown
in Equation 5.

|T|=
∣∣Ccontact−Ppivot

∣∣ |F|sinθ (4)

Where θ is the angle between the lever arm and the
force.

|F|= |T|∣∣Ccontact−Ppivot
∣∣sinθ

(5)

The direction of the force is parallel to the gravity vec-
tor. The equivalent mass, mequiv, is calculated using the
equation for the force of gravity, i.e., mequiv = |F|/g.

The object can then be updated using the same base for-
mula as in the single object case Equation 1 but using
the equivalent mass instead of the mstack,above.

The algorithm for leaning stability uses some of the
same principles as the weight distribution function seen
before, but friction calculations are included as well.
First, the system identifies the number of objects in
leaning contact. If the number is one or less, leaning
stability is not possible. If the number is over 2 the
system also returns false, as this scenario is too com-
plicated for the current model to handle and this case
was not observed in the test how users stack with toy
bricks. Flat stacking is tested first, so if a object can be
stable using the above version, more than two contact
bricks are possible. The system handles the case where
an object is in contact with two other bricks (or ground
objects), and at least one of these is part of a stack.

First the lowest contact area (blue dot in Figure 2) is
found. The next step is to find the contact point, on
the horizontal plane, closest to the centre of mass of the
object. This point will function as the pivot point. The
torque from gravity is calculated in the same way that
it is calculated in the weight distribution function previ-
ously described with Equation 3. To find the direction
in which the torque acts on the second contact (green in
Figure 2), the cross product between the torque vector
and the line from the pivot to the contact point is nor-
malized. Using an approach similar to the one in Equa-
tion 5 the magnitude of this torque-induced force can
now be computed. By multiplying the magnitude of the
torque induced force with the force vector found before,
the force vector is determined. In order to calculate the
amount of friction supporting the object from the con-
tact point, the force perpendicular to the contact surface
must be calculated. This force is found by projecting
the force vector onto the inverted normal of the contact
area. Using this normal force, the Coulomb friction can
be calculated using Equation 6 [Erleben et al., 2005].

|Ffriction|= µ |Fnormal| (6)

Next the sliding force, the force the object wants to
move with, in the same direction as the friction force,
must be calculated in order to find the direction for the
friction force. Usually this would be done with a pro-
jection, but as the normal force has already been cal-
culated, the sliding force can be found by subtracting
the normal force from the force the object is generating
on the contact. Now the force on the pivot point can

Figure 2: Leaning object

be calculated using Equation 7. The normal force is in-
verted as this is the force the other object is assumed
to be exerting in a stable configuration to avoid object
penetration. It is assumed that the friction at the contact
point holds as much weight of the object as the friction
force allows.

Fpivot =−Fnormal +G−Ffriction (7)

Where Fpivot is the total force on the pivot point, Fnormal
is the normal force on the contact point and Ffriction is
the friction force on the contact point. G is the gravita-
tional force on the pivot point.

The normal force for the pivot point then can be found
in the same way as before, the friction and sliding force
as well. If the friction force is larger than the sliding
force, then the object is considered stable.

4 RESULTS
The tests were designed to investigate the capabilities of
the proposed system compared to the base physics sys-
tem. The tests included three stacking scenarios (see
Figure 3) which are based on common stacking behav-
ior observed in a preliminary user test. The simulations
were compared to each other and to recordings of the

Figure 3: The three stack types, from left to right: 4-stack,
card house and leaning tower.

behaviour of real bricks in similar stacking configura-
tions. The simulation stacks were constructed during
the simulation, with one brick being added to the stack
at approximately 1 second intervals until the structure
is completed or collapses. For better comparison with
real-world objects, KAPLA wooden bricks were used
as the base for all scenarios.

The results of testing the 4-stack structure showed that
the proposed system is capable of generating towers
over 25 levels high. The base physics system is only
capable of getting this structure to a height of four lev-
els high.

The card house stack can be simulated by the proposed
system and behaves stable. The base physics system
is not able to generate a stable inverted V which is the
base of the structure.

As the leaning tower scenario is to some extend simi-
lar to the 4-stack, the base physics engine is not able
to simulate the scenario. The proposed system makes
the tower collapse when the structure reaches 9 levels.
The collapse appears to occur at the correct time, how-
ever, it is too vertical since real towers tend to pivot on
the lowest level and remain mostly intact before impact
with the ground.

5 CONCLUSION
We presented an extension system to a physics engine,
which is able to simulate common stacking scenarios
that the base physics engine cannot simulate. These
results encourage further research on improvements of
the proposed system, in particular related to the simula-
tion of leaning bricks, which is currently not robust and
can in some cases allow incorrect stability.

6 REFERENCES
[Erleben, 2007] Erleben, K. (2007). Velocity-based shock

propagation for multibody dynamics animation. ACM
Trans. Graph., 26(2):article no. 12.

[Erleben et al., 2005] Erleben, K., Sporring, J., Henriksen,
K., and Dohlmann, H. (2005). Physics-Based Animation.
Charles River Media.

[Han et al., 2013] Han, D., Hsu, S.-W., McNamara, A., and
Keyser, J. (2013). Believability in simplifications of large
scale physically based simulation. ACM Symposium on
Applied Perception, pages 99 – 106.

[Hsu and Keyser, 2010] Hsu, S.-W. and Keyser, J. (2010).
Piles of objects. Proc. SIGGRAPH Asia, 29(6):article no.
155.

[Hsu and Keyser, 2012] Hsu, S.-W. and Keyser, J. (2012).
Automated constraint placement to maintain pile shape.
ACM Trans. Graph., 31(6):article no. 150.

[Kaufman et al., 2008] Kaufman, D. M., Sueda, S., James,
D. L., and Pai, D. K. (2008). Staggered projections for
frictional contact in multibody systems. Proc. SIGGRAPH
Asia, 27(5):article no. 164.

