Pressure induced changes to titanium phosphate glass

Lönnroth, Nadja Teresia; Youngman, Randall E.; Svenson, Mouritz Nolsøe; Aitken, Bruce; Smedskjær, Morten Mattrup

Publication date: 2015

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Titanium phosphate (TiO$_2$-P$_2$O$_5$) glasses are interesting materials due to their unusual glass forming range with high (65-75%) TiO$_2$ content, making them fascinating subjects to study from a structural point of view. The as-made glasses are dark due to the presence of a small amount of Ti$^{3+}$. They can be bleached to colorless glass when held in air for extended time at a temperature around T_g, resulting in pure Ti$^{4+}$-glasses as confirmed by EPR. We have subjected an Al-doped (5 Al$_2$O$_3$:67.5TiO$_2$:27.5P$_2$O$_5$) glass sample at T_g to a moderate pressure of 1GPa. Physical properties, including density, hardness and crack probability have been measured on both non-pressurized and pressurized samples. In addition, structural information has been obtained from Raman and MAS NMR spectroscopy. After pressurization a density increase of 6% is observed as well as an increase in hardness and crack probability. 31P MAS NMR indicates that the uncompressed glass consists mainly of Q1 and Q0 phosphate groups. The glass appears to become more depolymerized after the pressure treatment. A corresponding increase in both the proportion of 6-fold coordinated Ti and the fraction of higher coordinated Al species is also observed. These structural modifications can be correlated with the measured changes in physical properties.