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CHAPTER 146

VARIANCE REDUCTION MONTE CARLO METHODS
FOR WIND TURBINES®

M.T. Sichani, S.R.K. Nielsen & P. Thoft-Christensen
Aalborg University, Aalborg, Denmark

ABSTRACT:

Development of Variance Reduction Monte Carlo (VRMC) methods has proposed the
possibility of estimation of rare events in structural dynamics. Efficiency of these
methods in reducing variance of the failure estimations is a key parameter which allows
efficient risk analysis, reliability assessment and rare event simulation of structural
systems. Different methods have been proposed within the last ten years with the aim
of estimating low failure probabilities especially for high dimensional problems. In this
paper applicability of four of these methods i.e. Importance Sampling (1S), Distance
Controlled Monte Carlo (DCMC), Asymptotic Sampling (AS) and Subset Simulation
(SS) are compared to each other on a common problem. The aim of the study is to
determine the most appropriate method for application on realistic systems, e.g. a wind
turbine, which incorporate high dimensions and highly nonlinear structures.

1. INTRODUCTION

Assessment of reliability and design of highly nonlinear and high dimensional
structures such as wind turbines require estimation of very low failure probabilities

of the system. This task can be tackled from three different points of view. The first
class of methods is the extreme value distribution fittings to the extracted data of a
wind turbine (Caires & Sterl 2005, Mackay, Challenor, & Baha 2010). These data
might be taken either from measured responses of a real wind turbine or from epochs of
the response simulated by computer. This can be done in combination with some
sampling methods such as the epochal method or the Peaks Over Threshold method
(POT). It is implicitly assumed that the parent distribution belongs to the domain of
attraction of one of the extreme value distributions; therefore the excess values above a
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given threshold follow a Generalized Pareto (GP) distribution (Naess & Clausen 2001).
The required failure probability will be extrapolated from the fitted distribution.

On the other hand the so-called Variance Reduction Monte Carlo simulations
(VRMC) might be used for estimating the failure probabilities (Sichani, Nielsen, &
Bucher a). The applicability and efficiency of the VRMC methods on wind turbines is
the subject of this study in order to understand advantages and limitations of VRMC
methods within the framework of wind turbines. The VRMC methods enable efficient
estimation of the first excursion of the wind turbines within reasonable computation
charge. However, they do not provide any means of understanding the evolution of the
PDF of the process within time. This is of great interest since it gives a good insight
into the statistical characteristics of the system and effect of different components, i.e.
controller, on it.

Another approach for estimation of the first excursion probability of any
system is based on calculating the evolution of the Probability Density Function
(PDF) of the process and integrating it on the specified domain. Clearly this provides
the most accurate result among the three classes of the methods. The Fokker-Planck-
Kolmogorov (FPK) equation is a well-known tool for realizing the evolution of a
stochastic process governed by a differential equation. Although solution of the FPK
for even low order structural dynamic problems require excessive numerical
computations. This confines the applicability of the FPK to a very narrow range of
problems. On the other hand the recently introduced Generalized Density Evolution
Method (GDEM), (Li & Chen 2009, Chen & Li 2009), has opened a new way toward
realization of the evolution of the PDF of a stochastic process. It is an alternative to the
FPK. The considerable advantage of the introduced method over FPK is that its
solution does not require high computational cost which extends its range of
applicability to high order structural dynamic problems.

2. ESTIMATION OF LOW FAILURE PROBABILITIES

Estimation of failure probabilities of a wind turbine model is not a trivial task since it
incorporates a highly nonlinear model for which the failure probability is to be
estimated within long time duration e.g. 600s. However on the structure part, the wind
turbine consists of a simple linear model, nonlinearities in such models appear from
loading. These stem from two origins namely the nonlinear aerodynamic loads and

the presence of a controller. The aerodynamic loads are highly nonlinear functions of
the instantaneous wind speed and the pitch angles of the blades which are calculated
with different means e.g. Blade Element Momentum theory (BEM) in this study. The
pitch-controller introduces additional nonlinearities to the model i.e. due to its
saturation state. Next according to the design criterions the barrier level of a specified
failure probability, e.g. 3.8 x 107, is required to be defined. This can most efficiently
be estimated if the Cumulative Density Function (CDF) of the failure probability can be
derived down to low failure probabilities of the order 10,

The focus of this paper is on the VRMC methods. Among the various available
methods Importance Sampling (IS) (Bucher 2000, Au & Beck 2001, Macke & Bucher
2003) , Distance Controlled Monte Carlo (DCMC) (Pradlwarter, Schu“eller, & Melnik-
Melnikov 1994, Pradlwarter & Schueller 1997, Pradlwarter & Schueller 1999),
Asymptotic Sampling (AS) (Bucher 2009, Sichani, Nielsen, & Bucher a, Sichani,
Nielsen, & Bucher b), and Subset Simulation (SS) (Au & Beck 2001) are chosen
primarily.
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All of the methods aim at the same subject, i.e. estimation of the low failure
probability events. However, they tackle the problem from very different points of
view. 1S moves the so-called sampling density of the problem to the boundaries of the
failure region hence generates more samples in this area. DCMC works more on a
logical basis where the idea is to run all the simulation samples simultaneously and find
those processes which are closer to the boundaries of the safe domain and increase the
outcrossing events by putting more emphasis on these important events. The AS
development is based on the asymptotic estimation of failure probabilities (Breitung
1989). Here the advantage of the linear relationship of the safety index for multi-normal
probability integrals is considered to estimate low failure probabilities by proper
scaling of the probability integral. AS forces more outcrossing by increasing the
excitation power. SS takes its basis on the conditional probability estimation.

It breaks the problem of a low failure probability estimation into estimation of a
multiplication of some higher probabilities. Next a conditional sampler i.e. Modified
Metropolis-Hastings algorithm is used to estimate the conditional probabilities.

Primarily introduced methods are used for failure probability estimation of a
Single Degree of Freedom (SDOF) oscillator. Comparison is made on the results of the
methods in terms of their accuracy, requirements and computational load. Standard
Monte Carlo (SMC) simulation for the same system is performed for global
comparison of accuracy of the methods.

This study prevails advantages and disadvantages of each of the methods in
application on dynamic systems. Next, the method with highest merit is chosen
and applied on a wind turbine model developed in previous study c.f. figure 7.

3. IMPORTANCE SAMPLING
3.1 Introduction

To apply IS (Macke & Bucher 2003) it is necessary to have estimation of the system
responses at the failure time instance, i.e. displacements, when it is excited by the
increments of the Wiener process. This estimation is the basis for constructing the so-
called control functions which their characteristics are that they bring the system
response to the failure state at failure time instance, i.e. t, = kAt, if the system is

excited with them. Next, these deterministic drifts are added to the Wiener increments
and the result is used as the final system excitation. Starting by designing control
functions, if excitations are not Wiener increments themselves, they should be
represented in terms of them. Suppose the system is described by the Ito SDE (1)

dZ(t) = p(t,Z)dt + o (t, Z)dW(t)
(1)

Z(s) =1z

where Z(t) is p-dimensional system response subjected to the initial conditions Z(s) = z
for any 0 <s < T'and W(t) is the vector of g-dimensional unit Wiener processes. Given
that the failure domain boundary is specified by the failure surface gZ(t,W)_ = 0 such
that

F={zly(z) >0} (2)
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using (1), (2) can be written in the terms of the Wiener excitation i.e.
F={wlg(w)>0}
the failure probability can be defined as

Py = ] d Py (w)
‘;L_

= ] I [;;[Z{?‘. w)) } d Py (W) (3)
-

_ £, {f [_;,rfz.j}]

where 1[] is an indicator function which is equal to 1 if the process has outcrossed to

the failure domain and else is zero. The probability measure Pw(B) relates a probability
to any sub-domain B € Ry, i.e. a differential volume around a sample point w, and can
be written as dP(W) = f.(w)dw. Ew signifies the expectation operator under the
probability measure f,(w).

Based on (3) SMC estimates the failure probability of the system by (4); where
Nsim is the number of Monte Carlo samples.
1 4?\';3???}

> Ig(zb))] (4)

3.2 The Girsanov Transformation
The idea of the IS based on the Girsanov theorem is to introduce a square integrable

drift u(t) ,i.e.
Z"" ) [ SF u';? (T)dT < 00
into the excitation, which brings the systems response to the failure region at the
desired time.
dW(t) = u(t)dt + dW(t) (5)
The Ito SDE (1) can then be written as
dZ(t) =p(t,Z)dt — o (t. Z)u(t)dt )

+ at. Z‘_jurﬁ;f*lff] > (6)

Z(s) =z )

The Girsanov theorem then states that the process W is a Wiener process
under the probability measure P,. Therefore generating samples of W under the
probability measure P,, corresponds to generating samples of W under the probability
measure. This means that the drift of the excitation might be designed in any sense that
brings the system to the failure at the desired time instance. Next, the probability
measure should be changed properly to take into account the effect of this
transformation which is done in the following way
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h'

P; = f I [g(z{r. wtl}] fw(w) fo(w)dw
RY

w(w)

. ~ -‘er'“' I,r ‘Wx:' ,
= I'g(Z(t, W) — fw(w)dw \ 7
qu [_t,r( _ |}] ﬁfpﬁ-l,w'f“ W)dw L (7

d Py (w)

d Py (w)

= E | 1[9(Z)]

&

where g(Z) = 9(Z(t,W))) and the ratio dPw(w) / dP, (w) is the well-known Radon-
Nikodym derivative of the probability measure dP,(w) with respect to the measure
d P, (w) ). E,signifies the expectation operator under the probability measure f_(w).
Upon the Girsanov theorem the probability measure of (7) can be changed to f(w
hence (8)

- o APy (W)

Pr=Ey [f [9(X)]

dPg (W)

(8)

where
9(Z) = g(Z(t,W))

The significance of equation (7) is that the probability measure can be changed
so that the process W can be used instead of the original process W to estimate the
failure probability of a system provided that the Radon-Nikodym derivative is taken
into account. Based on (7), the failure probability of the system can be estimated using

(9):

. L p
1 ot 5 () ”rp“_ ( whd/ \.I
v () ©

i=1

Py =

4. RUSSIAN ROULETTE & SPLITTING WITH DISTANCE CONTROL

The method encompassed two components “Russian Roulette and Splitting” (RRS),
which replaces “unimportant” realizations with the “important” ones, and “Distance
Control” (DC), which takes care of determining the importance of the realizations. The

method substitutes the processes with low probability of causing failure, called the
unimportant processes, by the so-called important processes i.e. processes with higher
probability of failure. This substitution might be readily done by splitting (duplicating)

some of the important processes with control over their statistical weights such that the
statistics of the simulation is not changed after splitting. The distance measure is used
to distribute the samples in the state space. Pradlwarter and Schueller (Pradlwarter,
Schieller, & Melnik-Melnikov 1994) define this in the following way. A given
realization z(t) of the p-dimensional state vector Z(t) is associated with a vector | (z(t))
with non-dimensional components I;(z(t)).
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o 2 (t) — tz,(t) _
fi(zl,r,l) = o (1) , t=1,---.p (10)

where pzi(t) and _zi(t) denotes the mean value and the standard deviation of the possible
non-stationary process Z(t). In case these cannot be determined analytically a
preliminary SMC is performed. The components li (z(t)) may otherwise be specified
with arbitrarily selected relative weight. The distance measure d (z(t)) related to the
realization is then defined as

.
d(z;(t)) =Z a;||1(zs,;(t) —1(z;(8) ||
= (11)
(] = (g =+ =

where zjj(t) denote the k* closest realization to zj(t) and ||.|| is the Euclidian norm. The
closest realization with the weight a, is weighted highest. The weights were chosen as

o, =24 (12)

For a SDOF oscillator subjected to Gaussian white noise |[|I(z)]| with I(z(t))
defined by (10) is proportional to the mechanical energy of the oscillator. However,
(10) does not represent the mechanical energy in any other case than the indicated.
Instead, (11) can be
replaced with

"

d(z;(1) = a;En(25(t) — 2;(1)) (13)

i=1
where Em is themechanical energy of the system. The mechanical energy, itself could
alternatively be used as a distance measure. This possibility is also examined by the
authors though no improvement of the results compared to the weighting proposed by
(11) is observed; which has already been reported in the literature (Pradlwarter,
Schu'eller, & Melnik-Melnikov 1994, Pradlwarter & Schuéller 1997).

5. SUBSET SIMULATION

The subset simulation strategy starts from the reachable barrier level(s) by a predefined
low number of samples and increase the level gradually until the highest barrier level
required. This can be done by defining intermediate probability

Py =pi" <p"? <..apy
fcorresponding to the intermediate barrier levels b = bm> bm-71> - - - > b1. Using this

property taken from the fact that failure probability can not increase as the barrier level
increases, the required failure probability pris written as

pr(bab1)  pr(be)
pe(b)  pelby)

pi(ba|by) = (14)
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Using (14) the final failure probability, i.e. the lowest failure probability
required, is written as the following product

m—1
ps(b) = ps(by) [ | pr(bigalbe) (15)
i=1
The method then follows with estimation of each of the m terms on the right

hand side of (15) using some type of Monte Carlo simulation. Therefore it is bene-
ficial to let the barrier level be chosen in an adaptive manner and fix the intermediate
failure probabilities associated to them. All of the terms in the product are chosen large
enough so that they can be estimated with low number of samples, i.e. p, = 0.1 in
conjunction with (16).

ijljhj_] = o "
16)
pelbipa|l;) = po . i=1,-m—1 } (16)

p:(b1) can then be estimated efficiently by SMC with low number of samples i.e.
Nsim = 100. However the conditional probability terms in (14) can not be estimated
by SMC and need a technique which is capable of generating samples conditioned on
the previous samples. Au and Beck (Au & Beck 2001) proposed using a Modified
Metropolis-Hastings (MMH) algorithm for this purpose and called it the subset
simulation.

The method starts with a SMC with Nsim number of samples which allows
accurate estimation for the first term on the right hand side of (15). The realizations
of the excitations in the i™ level of the simulation, i.e. W)= {w,¥, ... Wi’} where
W denotes increments of the Wiener process, which their response corresponds to the
barrier levels higher than the barrier level bi. These realizations provide a set of the so-
called seeds for generating the next generation of excitations. Candidates for next
generation of excitations are generated using a conditional sampler, e.g. MMH, using
these seeds. This step provides the estimation for the conditional terms in (15) and will

be repeated m times , c.f. (15), to reach the required failure probability i.e. p; provided
(16).

i—1 Naim

!
‘;f Z Ly (W) . i=1,---,m (17)
+¥aim =1

i__
Pr=

where p%¢=1; p' represents the minimum failure probability calculated in the i step

of the simulation. F denotes the failure domain and Irq( Ww;j ©) is the indicator function
which will be one if the response to w lies in the i* intermediate failure domain and is
zero otherwise.

6. ASYMPTOTIC SAMPLING

The method is developed based on the asymptotic estimation of multi-normal integrals.
The problem of approximating a multi-normal probability integral (18) on the scaled
LSF which can be represented after proper transformation of random variables as

N
plB &) = / H .;( — %gfjdg (18)
i—1 =

a(A-1g)<0 =
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where & ={ &, - - -, &£,} denotes the vector of standardized independent multi-

normal random variables; LSF is defined as g(ﬂ‘1§)<0 . The first parameter in the
arentheses on the left hand side denotes scaling of the variables in the LSF. ¢(.)

denotes the standard normal density function. The boundaries of the integral in (18) can
be changed to unscaled LSF which reads

N i 32
plB.&) =" f H-T?( — ?i;)fff (19)

g(&)<0 '~
which is shown to be asymptotically equal to @ (— 8 _)|J"> as B— oo; where |J-is a

parameter related to the first and second order derivatives of the LSF at the design
point. (18) and (19) mean that the desired low probabilities can be approximated on a
scaled failure domain and then transformed back into the unscaled domain. This idea
forms the procedure of AS (Bucher 2009) which starts with a SMC on the scaled
variables i.e. excitations with artificially increased standard deviation. The reliability
index is primarily estimated based on the scaled failure probability, e.g. g(f) = ® (1 —

p ==, and is then scaled back to the unscaled space, e.g. 8 (1) = f* S (f). The desired
probability is estimated as® * (1) then.

More details of the method and some practical aspects for improving its
efficiency on dynamic problems are presented in (Sichani, Nielsen, & Bucher a,
Sichani, Nielsen, & Bucher b).

7.NUMERICAL SIMULATION

7.1 SDOF oscillator
The first simulation is based on a single DOF linear oscillator (20), characterized by

wn,=1s"and ¢, =0.01
P(t) + 2Cawnd(t) + wia(t) = w(t) (20)
® 1 1S zero-mean Gaussian white noise with unit intensity. The barrier level is

normalized with respect to the standard deviation of the response o, = (44“@3)71/2 :
b

FT_\L‘

by = (21)

The failure event is defined as the maximum of the absolute value of the
response of the oscillator exceeds a certain threshold “b”, i.e. Pr(Jy(t)| > b) for t € [0,
600]. The normalized barrier level is assumed to be by =5 in simulations. Simulations
are carried out with At = 0.0614s and t € [0, 600]s which involves 9772 samples to
examine the performance of the method in high dimensions. Exact failure probability
and reliability index for the problem, calculated with standard Monte Carlo simulation
with 2 x 10° samples, are P; (600) = 2.07x 10* and 4= 3.5310 respectively.
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7.1.1 Importance sampling

Figure 1.a shows one of the control functions of the SDOF oscillator. The response of
the system to this excitation, i.e. deterministic drift, is shown in 1.b. Estimation of the
failure probability for different time instances are shown in figure 2. As seen from this
figure IS is very attractive in the first sight due to its high accuracy for failure levels.
However its shortcomings in application to more complicated problems are also

)]

40

0 100 200 300 400 300 600

=)

Figure 1: Control function and response of the SDOF oscillator; a) Control function, b)
response.

10°®

F}[r]
-
[=]

w0}

0 100 200 300 400 500 60D

Figure 2: Estimations of the failure probability with IS; Solid line: SMC, dots : IS

considerable. Since failure may occur at any time instance within a distinguished time
period t € [0,T]s, IS requires that all of the control functions that cause failure during
this time interval should be available to allow considering the interaction between
different design point control functions. This requires heavy dynamic analysis in order
to compute these control functions primarily and also high memory is required to save
them. Unfortunately this requirement specifically for Multi Degree Of Freedom
(MDOF) nonlinear systems poses severe difficulties as in such cases there exist no
analytical solution for the design point excitations. In such cases a high dimensional
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optimization algorithm should be used to find the design points excitations,
alternatively called control functions, which is very expensive, (Koo, Der Kiureghian,
& Fujimura 2005).

These problems have also been noticed by other researchers, however to the
best knowledge of authors IS applications are very limited i.e. nonlinear SDOF
systems, (Naess & Gaidai 2008), or linear MDOF systems with only one stochastic
excitation process (Jensen & Valdebenito 2007). The above reasons conclude that using
IS with presented scheme may not be considered a proper candidate for application to
wind turbine models.

1o

Frit)

1w b

i} 1liIII 2CIII'.ZI E(III 40.'] SCIIG 600

HEN
Figure 3: Estimations of the failure probability with DCMC; Solid line: SMC, dots:
DCMC

7.1.2 Russian roulette & splitting with distance control

The DCMC with the distance measure considered as a weighted summation of six
closest neighbor processes i.e. K = 6. The parameters of the DCMC are chosen g =

0.8, po=0.5 @mn =5 x 107, (Pradlwarter & Schu“eller 1999), and the results are
shown in the figure 3. A unique feature of DCMC compared to the other algorithms
implemented in this study is that it works directly on the responses and does not make
any changes in the excitations. Advantages of DCMC are generality of application and
low memory requirements and its capability in handling high dimensional problems.

The method’s shortcomings are the implementation of it which requires all of
the samples to run in parallel i.e. all 500 simulations should evolve simultaneously to
allow statistical weighting adjustment. This requires changing the states during the time
integration of the governing equations. This may cause some practical issues during
implementation of the algorithm on practical codes. Next, DCMC like IS is capable of
estimating failure probability of a predefined threshold level. This is less motivating in
wind turbine problems where the opposite is required i.e. the threshold for a given
failure probability.
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7.1.3 Asymptotic sampling

For each barrier level Ngi,m = 500 number of samples with 5 support points are used with
different Af and range of f. Figure 4 illustrates the effect of distribution of support
points. Clearly too low values for f will cause all of the processes to cross out which
does not give any information while choosing too large f will cause few out crossings
which increases the uncertainty of the estimation. It is seen that the maximum accuracy
of the method, i.e. the least standard deviation of the estimate, is achieved when the
support points are distributed in the region where 2 to 98 percent of the realizations
crosses out c.f. figure 4.b compared to figure 4.a in which 2 to 50 percent of the
realizations have crossed out. The black dots on the right hand side of the figures show
the exact value of the beta.

Figure 5 shows estimations of the failure probability for the same barrier level
in different time instants where solid line shows the SMC results.

a (I8 i i [ 1 i L) . g oA L
+
i

Figure 4: Sstimations of the reliability index _ with asymptotic sampling for 600[s];
single DOF oscillator. a) Uniform distributed support points , CoV_Pf (600) =1.2 b)
Non-uniform distributed support points, CoV_Pf (600)_=0.2

10°*

107§

0 100 200 300 400 500 @00

fis)

Figure 5: Estimations of the failure probability with AS; Solid line: SMC, dots: AS

7.1.4 Subset simulation

Results of SS applied on the oscillator for failure for different time instants within the
time interval t € [0, 600]s are shown in figure 6 as counterpart of figures 2, 5 and 3. For
estimation of failure probability in this figure 4 levels of MCMC is used only for T =

2023



400s, 450s, 600s; for T = 150s, 200s, 250, 300, 350s 5 MCMC levels are used and for T
= 100s, 75s, 50s respectively 6,7 and 8 MCMC levels with p; = 0.1 with Ng, = 500
samples in each step. The proposal distribution is assumed uniform with half spread
equal to the standard deviation of the excitation seeds (Au, Cao, & Wang 2010).

The SS approach is based on changing the excitation realizations like IS and
AS. The method is based on designing new excitations within a fixed time duration
based on previous excitation realizations which have reached the highest barrier levels
in previous simulations e.g. seeds. In this way it may be interpreted as a stochastic
optimization procedure.

Ll

Frit)

i} 1-'.;3 2'.';I-:I 3-:III 403 SIEIG 600
.*[N]
Figure 6: Estimations of the failure probability with SS; Solid line: SMC, dots: SS

The method has several interesting features which are in line with requirements
of the wind turbine design criteria. An advantage of SS is that it estimates the
thresholds related to a given failure probability. This is what is required in wind turbine
design codes, (IEC 2005), while the other three methods provide the failure probability
given for a predefined threshold level.

SS is a very accurate method for low failure probability estimation of high
dimensional nonlinear systems (Au, Ching, & Beck 2007). However some practical
procedures should be taken into account for very high number of basic variables which
should be kept in memory during simulations e.g. random numbers required to generate
the turbulent wind field. Nevertheless the method seems to propose a good candidate
for application on the wind turbine model. Most favorably the method is a so-called
acts as a black-box which means it does not require any a-priori knowledge of system
which adds to its advantages.

7.2 Wind turbine

Design codes for wind turbines are based on a return period (expected first-passage
time) of T, = 50year, which itself requires design values related to the failure
probability of the wind turbine models down to the order 10~’. According to the
IEC61400-1 standard (IEC 2005), the design value r of a stochastic response {R(t) ,
te[0,00[ }(deformation, bending moment, stress, etc.) is obtained by extrapolation of
the failure probability under normal operation of the design value r in a referential
epoche T to Tr. Presuming independent failure events in adjacent referential epoches
the exceedance probability of the design value is given as
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P(Rm., ) = ;) ~ TP(RW.._T,. ,.,) (22)
Rmax(T) and Rpax(tr) denote the maxima value in intervals T and T,. With Tr = 50 year

and T = 600s, (22) provides the relation

— T i -

P(Rwuz;rzu r) S T =38x107 (@3
FCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT T
| . |

White I Turbulence Influence 4.&1':;:: ds c i
" function 1

noise : filter BEM |
i |
—— B |
| ! |
: Botor’s Azimuth i
1 1
| _ Stuctural | E
: Fitch controller Fotor's speed dynamic [—| |
o 1 || solver [ |
Fm]m‘e.przblabﬂlry Structral responses : I
estimation H ,

Figure 7: Flowchart of the wind turbine model.

The design value r is obtained as the solution of (23). It is out of question to
determine this by SMC simulation due to the indicated low failure probability. The
Suggested approach in the IEC61400-1 standard is to use a Weibull or a Gumbel
distribution as the distribution function Frnax(T) = 1 — P(Rmax(T) > r). The locations,
scale and shape parameter, are estimated from the available sample.

Applicability of the selected method on a reduced order model of a 5SMW
reference wind turbine developed in previous study c.f. figure 7, (Sichani, Nielsen, &
Bucher b), is tested. Specifications of the wind turbine model are adopted from the
NREL reference wind turbine (Jonkman, Butterfield, Musial, & Scott 2009). It is
attempted to cover the principal behavior of a wind turbine.

The model consists of structural and aerodynamic loads but no controller, i.e.
fixed rotational speed is assumed. The details of the model specifications are explained
in (Sichani, Nielsen, & Bucher b). The wind field is simulated in 31 nodes on 50m
distance from nacelle of the rotor with 63m blades using a state space model. Failure
probabilities of the model are estimated with the AS as the primary candidate method.
Figure 8 shows failure probability of the wind turbine model estimated with SMC with
4 x 105 samples, AS with 32x 500 samples (Sichani, Nielsen, & Bucher b), Weibull
and Gumbel fits with 500 simulations each.

The results of AS estimations show good consistency with the SMC results. The
AS method has the advantages of very low memory requirement and simplicity of
application even for very high dimensional problems.
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Figure 8: Estimated failure probability of the wind turbine for fixed speed wind turbine.
—: 50 year recurrence period, bold black: SMC, —: 3-parameterWeibull distribution, -
- - - Gumbel distribution, blue: AS.

8. CONCLUSIONS

Among the methods considered in this paper IS shows the highest accuracy however
faces serious difficulties in application on wind turbine models due to excessively high
number of dynamic analysis it requires for nonlinear systems. The DCMC method is
applicable on such models however certain features, i.e. parallel running and
communication of samples during solution, are required which may limit its
applications on practical codes. The AS and SS methods seem the most suitable
methods since they have similar characteristics regarding no a-priori knowledge about
model as well as low memory requirements. The AS method is already applied on a
wind turbine model and results show good agreement with the SMC with much
higher efficiency.

It worth mentioning that total number of dynamic analysis required by all of the
methods mentioned in the paper for accurate results may be considerably larger than
the nominal number of samples, e.g. 500 in this paper, except the DCMC method.
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