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SOME OBSERVATIONS ON THE SUBSET SIMULATION 
RELATED TO THE WIND TURBINE MECHANICS1 

 
M.T. Sichani, S.R.K. Nielsen & P. Thoft-Christensen  

Aalborg University, Aalborg, Denmark 
 
 
 
ABSTRACT  
The subset simulation method is considered to be one of the most powerful methods 
among the variance reduction Monte Carlo techniques. Potential shortcomings of the 
method are the bias in its estimations and potential challenges in finding important 
directions in high dimensional nonlinear problems. The important directions in the n-
dimensional space of the problem are those toward which the failure region extends i.e. 
by moving in those directions the simulation will fall into the safe domain. It is clear 
that finding these important directions becomes increasingly difficult as the number of 
the basic random variables of the problem increases. Moreover when the failure domain 
of the problem is not a simply connected domain, e.g. failure islands, finding the 
correct direction, or island, becomes even more difficult. This case occurs frequently 
in time variant dynamic reliability analysis of nonlinear systems. It is interesting to 
determine applicability of the Subset Simulation (SS) techniques, as a powerful 
representative of Variance Reduction Monte Carlo (VRMC) methods, on the wind 
turbine systems specifically with an active controller. Hence in this paper we apply and 
discuss these methods on a benchmark wind turbine model and analyze the results in 
view of their applicability. 
 
1. INTRODUCTION 
In order to estimate the return period of the wind turbines (IEC 2005a) it is necessary to 
estimate the first passage probability, alternatively called failure probability, of these 
systems. For this aim the IEC standard recommends fitting one of the extreme value 
distributions, i.e. reversed Weibull or the Gumbel distribution, to the peaks extracted 
from six epochs of 10min. duration, of the wind turbine data (IEC 2005b). 

1 Proceedings IFIP WG 7.5, Yerevan, Armenia, June 2012, pp. 159-166,  
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 Unfortunately the choice of Extreme Value Distribution (EVD) combined with 
the part of the data used to find EVD parameters result in considerably different 
extrapolated design values. Alternative to extreme value curve fitting and extrapolation, 
simulation techniques may be used for estimating these return periods. The natural 
choice for this purpose is the Standard Monte Carlo (SMC) simulation. The 
computation cost of this approach is however far beyond reach of the available 
computers’ power even on a modern machine. This is since wind turbines have rather 
complicated dynamic models which ends up in a high dimensional nonlinear Limit 
State Function (LSF). The nonlinearities coupled with high dimensions of LSF is 
enough to make the problem very difficult to solve (Valdebenito, Pradlwarter, & 
Schueller 2010; Katafygiotis & Zuev 2008).  
 Therefore a method that can handle these problems with reasonable effort could 
be of great interest in this area. The Variance Reduction Monte Carlo (VRMC) methods 
are an alternative choice which are able to produce estimations similar to SMC but with 
less variance. The Subset Simulation (SS), introduced by Au & Beck (Au & Beck 
2001), for estimation of small probabilities of high dimensional systems is reportedly 
one of the most powerful techniques in the field of structural dynamics. An advantage 
of SS over the other VRMC methods, such as IS, is its capability in handling high 
dimensional and complicated problems within reasonable effort (Schueller & 
Pradlwarter 2007).  
 Recently two new algorithms have been proposed to increase the efficiency of 
the subset simulation (Santoso, Phoon, & Quek 2011; Zuev & Katafygiotis 2011). 
These algorithms tackle the problem by the way they generate the conditional samples 
of the problem. The first algorithm (Santoso, Phoon, & Quek 2011) aims at increasing 
the quality of the estimates by decreasing the correlation of the chains which are 
generated during simulation e.g. Markov Chains. The other algorithm (Zuev & 
Katafygiotis 2011) improves the performance by delaying the rejection of the generated 
Markov Chain in the Limit State Function evaluation.  
 In this article a nonlinear model of a wind turbine according to (Sichani, 
Nielsen, & Bucher 2011; Sichani, Nielsen, & Naess 2011) is used as a benchmark for 
analysis of the applicability of these methods. The discussed algorithms are applied to 
this benchmark problem and the results in terms of their bias and capability of 
estimating low probabilities are studied. 
 
2. SUBSET SIMULATION 
Assume that the LSF is defined as G(X) where X consists of the random variables of 
the problem. The barrier level bj which corresponds to a sample of X, i.e. xj , is then 
given by bj = G(xj ). In view of structural dynamics X can be recognized as the 
stochastic excitation within a given time duration and b as the maximum of the 
magnitude of the response to the given excitation.  
 The strategy of the SS is to obtain samples of b which have low probability of 
occurrence, starting by that which can be accurately estimated with low number of 
simulations e.g. b(1). Next, this barrier level will be increased gradually until the 
highest(required) barrier level or probability is estimated with desired accuracy. This is 
done by defining intermediate probability levels pf = pf

(m) < pf
(m−1)< · · · < pf

(1)  
corresponding to the intermediate barrier levels b = b(m) > b(m−1) > · · · > b(1). Using this 
property taken from the fact that the first passage probability cannot increase as the 
barrier level increases, the required first passage probability pf can be written as 
pf (b(2)|b(1)) = 
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pf(b(2)|b(1)) is the conditional probability of exceeding b(2) on the condition that b(1) is 
exceeded. 
 Using Equation (1) the final first passage probability, i.e. the lowest first 
passage probability required, may be written as the following product 

  
 The SS method aims at estimating each of the m terms on the right hand side of 
Equation (2) by some type of Monte Carlo simulation. Therefore, it is beneficial to let 
the barrier level be chosen after simulation of each stage is performed and fix the 
intermediate first passage probabilities associated with them. All the terms in the 
product are chosen large enough so that they can be estimated with low number of 
samples i.e. p0 = 0.1 in conjunction with Equation (3). 

 
 
b(1) with its probability pf (b(1)) = p0, is determined by performing SMC with low 
number of samples, i.e. Nsim = 500, as the (p0 × Nsim)th barrier level when all simulated 
barrier levels are sorted in descending order. The conditional probability terms on the 
right hand side of Equation (1) cannot be estimated by SMC and need a technique 
which is capable of generating samples conditioned on the previous samples. For this 
reason those samples of X(1) which correspond to the barrier levels higher than b(1), the 
so-called seeds, are saved for simulating next generation of the excitation. This consists 
of Nseed = p0 ×Nsim seeds to be kept in memory. In the next section the original 
Metropolis-Hastings algorithm is described which is the basis for the conditional 
sampling. 
 In the following sections the proposed modifications are explained with 
emphasis on their difference with the original algorithm. 
 
2.1 Metropolis-Hastings algorithm 
Let x(k) denote the samples of a discrete stochastic load process X(k) at the instants of 
time k = 1, · · · ,N - in the reliability analysis these refer to the basic random variables 
used to generate the loads -. The random variables X(k) are assumed to be mutual 
independent and identical distributed with the Probability Density Function(PDF) 
π (x(k)). X(k) is assembled in the random vector X with the Joint Probability Density 
Function(JPDF)π (x). Due to the iid components π (x) becomes as indicated in 
equation (4). It should be noted that in our context the random variables X(k) refer to 
neither the time samples of the turbulence process nor the response of the wind turbine. 
 These are the basic random variables which will be transformed into the 
turbulence process (Sichani 2011). Correspondingly the samples are stored in the vector 
x. Let X(i) and X(i+1) denote stochastic vectors representing (or transformed into) the 
load process, when changing from barrier level b(i) to barrier level b(i+1). Both of these 
vectors are identical distributed, but not independent. The transition kernel, or 
alternatively called the proposal distribution, that X(i) = x moves to X(i+1) is shown by 
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p(X(i+1)|X(i)). Due to the independence and identical distribution of the components 
within X(i+1) and X(i), respectively, this may be written as 

 
where π (·) and p(·) are the one dimensional PDFs of the discrete components X(k). 
 Consider “Nsim” samples {x1(i) ,···, xNsim

(i) } of X(i) from the ith simulation level. 
The transition kernel that X(i) = xj

(i) moves to a state in X(i+1), e.g. p(X(i+1) |X(i) = xj
(i) ), 

can be chosen with the mean value xj
(i), but can otherwise be arbitrarily chosen 

(Santoso, Phoon, & Quek 2011). For instance a uniform or Gaussian distribution with 
an arbitrary standard deviation, such as the sample standard deviation of the seeds (Au, 
Cao, & Wang 2010), and its mean value at the value of xj

(i)(k) for k = 1,···,N. Initially a 
candidate ξ j for xj

i+1), j = 1, · · · ,Nsim is drawn from p(·|xj
(i)). 

 In order to ensure that samples of Xj
(i+1) j generated by MH will also be 

distributed with distribution π (·), it is necessary that the so-called “reversibility 
condition”, which states that π (ξ j) p(xj

(i) |ξ ) = π  (xj
(i) ) p(ξ |xj

(i) ), be satisfied for all 
samples of xj

(i) and ξ j (Chib & Greenberg 1995; Santoso, Phoon, & Quek 2011). For 
this reason Equation (5) is used as the probability of accepting candidate samples. 

 
 Next ξ j is accepted as the next sample, e.g. xj

(i+1) =ξ j with probability 

 
where the term w.p. means “with probability”. Therefore, after generation of a 
candidate sample ξ j a random number is drawn from a uniform distribution between 0 
and 1 e.g. U(0, 1). If this number is less than a(xj

(i) ,ξ j) of equation (5), ξ j will be 
accepted as the next sample; else will be rejected and replaced by the seed xj

(i).  
 This procedure guarantees that the distribution of the samples will not be 
changed as barrier levels increase (Hoff 2009). In case the proposal distribution is 
chosen to be symmetric, i.e. p(B|A) = p(A|B), it is called the random walk Metropolis 
Hastings and equation (5) reduces to 

 
2.2 Conditional probability estimation 
The method follows the procedure described in section 2 that started by a SMC and 
defining the first barrier level b(1). In the next step(s) Nsim candidate samples for xj

(i+1) , j 
= 1,···,Nsim will be generated using a conditional sampler, i.e. MH. The next generation 
of excitations is conditioned on a randomly chosen seed of the previous simulation. If 
ξ j is accepted according to equation (6) using either equation (5) or equation (7), the 
second accept/reject test will be performed as 
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where F(i) denotes the failure domain of the ith level e.g. F(i) = {ξ j|G(ξ j) > b(i)}. 
Equation (8) means that ξ j is accepted (after being accepted in the accept/reject test of 
the MH) only if it increases the barrier level to higher than b(i), else is rejected and 
replaced with its seed. This step provides the estimation for the conditional terms in 
equation (2) and will be repeated m−1 times, c.f. Equation (2). The same strategy that 
was described in section 2 for choosing barrier levels and seeds will be used in all m−1 
stages of the simulation.  
 This result in 

 
pf i represents the minimum failure\first passage probability calculated in the i th step of 
the simulation. p0

i−1 0 means p0 raised to power “i−1”. Ig(i)(xj
(i)) is the indicator function 

which will be one if the response to xj
(i) j lies in the ith intermediate failure domain and 

is zero otherwise. 
 
2.3 Modified Metropolis-Hastings algorithm 
The MH algorithm as presented in section 2.1 breaks down in high dimensional 
problems. This is since the probability of moving from x(i) j to _j , defined as Equation 
(5), decreases exponentially as the number of basic variables - dimension of the 
problem - increases (Au & Beck 2001). Therefore, Markov chains do not move so 
frequently from their current state to the next state and get stocked where they are. This 
problem can be solved by taking advantage of independency between candidate 
coordinates (components) and breaking the N-dimensional JPDFs π (x(i)

j ) and p(.|x(i)
j) 

into their corresponding N independent one dimensional PDFs π (x(i)
j (k)) and p(.|x(i)

j 
(k)) respectively. Accordingly probability of accepting the next state for each sample is 
defined independently as 

 
which in case of symmetric proposal distribution p(B|A) = p(A|B) reduces to 

   
 Next, the accept\reject test will be performed for each component of each 
realization. So for k = 1, · · · ,N 

 
This process will be repeated for j = 1, · · · ,Nsim times to generate the next set of 
excitations i.e. X(i+1) = {x(i+1)

1 , · · · , x(i+1) 
Nsim}. This modification is proposed in (Au & 

Beck 2001) and is called the Modified Metropolis-Hastings (MMH). Hereafter when 
this sampling scheme is used for the SS, it is invoked by the term SS-MMH. 
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2.4 Modified Metropolis Hastings with Reduced Chain Correlation 
 The Modified Metropolis-Hastings with Reduced chain Correlation (MMHRC) 
is recently proposed by (Santoso, Phoon, & Quek 2011) which aims in reducing the 
correlation between the Markov chains in the MMH. In view of the sample generation 
MMHRC follows the original MH algorithm based on Equation (5), Equation (6) and 
Equation (7), i.e. the N-dimensional JPDF is used. However every time the generated _j 
is rejected according to Equation (6), a new sample is generated conditioned on the 
same seed. This process is repeated as many times as needed to let the generated 
candidate be accepted by Equation (6). Clearly this modification takes more time 
forsample generation compared to MMH. SS-MMHRC shows good performance for 
low to medium dimensional problems i.e. N≤100 (Santoso, Phoon, & Quek 2011). 
 However, on the numerical simulation performed in this study, see section 3, 
the Markov chains generated by MMHRC have high tendency to stay in the initial 
state, i.e. a(x(i)

j,ξ j)=0. This means that the barrier level is rarely increased. This is due 
to the high dimensions of the problem which is the same problem that causes breaking 
down of the original MH algorithm in high dimensions (Au & Beck 2001). 
 
2.5 Modified Metropolis Hastings with Delayed Rejection 
Following the idea of (Tierney & Mira 1999) the so-called Modified Metropolis-
Hastings with Delayed Rejection (MMHDR) is proposed by (Zuev & Katafygiotis 
2011). Here the MMH approach is followed for generation of the conditional samples. 
Although in case a candidate sample does not belong to the failure region, i.e. ξ j∉  ᵹ(i) 
in Equation (8), it will not be rejected and will be given a second chance. In such a case 
the components of the candidate ξ j, e.g. ξ j(k), are divided into two non-overlapping 
sets. Set T = {k |x(i)

j(k) = ξ j(k)} which consists of the set of coordinates which have 
evolved to new states; and its complementary set T which includes the rest of the 
components.  
 Next, the coordinates which belong to T will be given another chance to evolve 
to a new state ξ (2). The proposal density of moving to ξ (2) (k), e.g. q(.|x(i)

j (k), ξ j(k)), 
can in general be chosen different from the proposal density of moving from x(i)

j (k) to 
ξ j(k), e.g. p(.|x(i)

j(k)), It should be noted that the candidate samples for ξ (2)
j  are again 

generated around the original seed x(i)
j(k), and not ξ j(k) i.e. q(.|x(i)

j (k), ξ j(k)), = q(.|x(i)
j 

(k)) (Zuev & Katafygiotis 2011).  
 The probability of accepting the new samples conditioned on the two previous 
samples is defined as (Tierney & Mira 1999) 
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where a(ξ j(k)), ξ (2)
j (k))determines the probability of moving from ξ j(k) to ξ (2)

j (k) in 
the same manner as defined in Equation (10). In case that both transition kernels are 
chosen symmetry Equation (13) reduces to  

 
where in Equation (14) the equality a×min {1, b/a} = b×min{1, a/b} is used which is 
true for any positive pair {a, b}.  
 
3. SUBSET SIMULATION ON WIND TURBINE 

The time duration for simulation is chosen 800[sec] where the first 200s are discarded 
to take into account the effect of the transient phase of the system response. The rest 
simulates a 10min. interval which is prescribed in design codes for extraction of 
probabilistic behavior of the turbines (IEC 2005b). The resolution of the time integrator 
is set to ∆ t = 0.2s. Turbulent wind field is simulated on 31 nodes, one on the hub and 
others at 0.8L radial distance from hub on an equidistance angular grid.  
 The mean wind is set to Vr = 15[m/s] and the cut-in and cut-out speeds are set to 
Vi = 5[m/s] and Vo = 25[m/s] respectively. The limit state function is defined as the first 
passage of the magnitude of the tower displacement from the threshold (barrier) level b 
i.e. pf (b) = Prob{

[ ]Tt ,0
max
∈

 |z4(t)|≥b}_with T = 600[s] of simulation. Discarding the 

transient simulation time, the LSF is defined as a function of 93000 stochastic 
variables. Failure probability of the model is estimated by SS compared to the SMC 
with 4.95 × 105 samples. 
 A practical issue is the very high number of the basic random variables, e.g. the 
iid Gassian random numbers which will pass through the turbulence filter, needed to be 
stored in the memory for the next stage of the simulation. These consists of seeds for 
two consecutive simulation levels which contains 2Nseed sets of basic random variables 
requiring approximately 12MB of disc space for only one simulation. Therefore a 
simulation with 500 initial samples and p0 = 0.1 requires approximately 1.2GB memory 
(or disc space) to save 2Nseed = 100 seeds for two simulation levels. The proposal 
distributions are chosen uniform centered at the sample seed with spread equal to 2 
times standard deviation of the seeds of the previous level.  
 Figures 1a and 1b show estimates of the first passage probability of the fixed 
speed wind turbine with SS-MMH and SSMMHDR respectively. In both figures 
number of samples is Nsim = 500 and probability increment is set to p0 = 0.1. Each 
figure shows 10 estimates of the first passage probability with SS together with the 
SMC results. The thick solid lines the figures show the SMC simulation results. The 
figures show that both methods are successful in increasing barrier levels and their 
estimates are close to that of the SMC. However SS-MMHDR results suffer from small 
over estimation of the first passage probability at high barrier levels.  
 Figures 2a and 2b show the estimates of the first passage probability of the 
variable speed wind turbine. The figures show that presence of the controller has 
considerable effect on first passage probability estimation. The controller not only 
changes the range of barrier levels but also makes the estimation of the first passage 
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probability a more difficult task. As seen in figures 2a and 2b both methods have rather 
poor estimates of the first passage probabilities of order 10−7 for the variable speed 
wind turbine case. For the fixed speed wind turbine the value p0 = 0.1 is shown to be a 
good choice and both methods overcome the difficulties faced by high dimensions of 
the model. However the variable speed model has difficulties in estimating very low 
probabilities. 
 
4. CONCLUSIONS 
The low first passage probability of a reduced order wind turbine model is estimated 
based on the Makov Chain Monte Carlo. A well-known method for this aim, e.g. SS-
MMH, with two of 

 

 
 
 
 
the most recent modifications to the original algorithm have been implemented and 
compared to the original method on the wind turbine model. The estimated first 
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passage probability of the fixed speed wind turbine with SS-MMH is in good 
agreement with SMC. On the other hand SSMMHDR results have small over 
estimations in their predictions. Nevertheless estimations of the first passage 
probability of the variable speed wind turbine is more difficult. The results show that in 
high dimensions the chains constructed by SS algorithms do not move to the next state 
often, and tend to stay in their initial state. 
 In most nonlinear problems the failure domain of the problem is not a 
continuous region but a set of the so-called failure islands surrounded by the safe 
domain. Therefore scaling up an excitation which belongs to the failure domain, may 
end in the safe domain. In case these islands are not small and distant from each other, 
i.e. the fixed speed model, Markov chains have a fair chance to increase the barrier 
level as they evolve. However finding the directions toward which (the islands in 
which) the barrier level increases becomes increasingly difficult as the islands shrink or 
their distance increases. This seems to be the case in the variable speed wind turbine 
model. The aforementioned reasons seem to be responsible for deterioration of the 
performance of the method in estimating the small failure probabilities of the variable 
speed model. 
 Results of this study show that subset simulation will suffer from presence of 
too many basic random variables in dynamic reliability analysis of wind turbines. 
Hence further research should take direction toward decreasing the number of the basic 
random variables to as few as possible. This is possible by using reduction schemes 
such as Karhunen-Lo`eve expansion or stochastic harmonic functions. Reducing the 
number of basic random variables however may affect the shape of the LSF of the 
problem and make it more complicated. These changes may be more design points, 
irregularities or discontinuities. It is already suspicious that the wind turbine model has 
discontinuous LSF; so reduction of the number of random variables may make it worse. 
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