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An Analysis of Modified Demodulation Based Grid
Voltage Parameters Estimator

Saeed Golestan, Senior Member, IEEE and Josep M. Guerrero, Fellow, IEEE

Abstract—The estimation of the grid voltage fundamental
parameters, i.e., the phase, frequency and amplitude, is re-
quired for a wide variety of applications, particularly for
synchronization and control of grid-connected converters and
for monitoring and protection purposes in power systems. To
accomplish this task, many approaches have been proposed in
literature. Recently, a modified demodulation based technique
(MDT) has been presented, which aims to accurately extract
the grid voltage fundamental parameters under harmonically
distorted and frequency-varying conditions. In this letter, it is
shown that the MDT is actually a phase-locked loop. The MDT
small-signal modeling and stability analysis are then conducted,
and some modifications to enhance its performance are suggested.
The effectiveness of these modifications is finally confirmed using
numerical results.

Index Terms—Demodulation technique, frequency measure-
ment, fundamental frequency, phase detection, phase-locked loop
(PLL), synchronization.

I. INTRODUCTION

The accurate extraction of the grid voltage fundamental
parameters, i.e., the phase, frequency and amplitude, is essen-
tial in a wide variety of applications, such as interconnecting
distributed generation systems to the grid, islanding detection
of microgrids, control of grid-connected power converters and
monitoring and protection of power systems [1]-[3].

Different approaches have been proposed in the literature
to estimate the fundamental parameters of the grid voltage.
The zero-crossing detection (ZCD) based method is probably
the simplest one. The ZCD approach, however, suffers from
a poor performance under noisy and harmonically distorted
conditions [4]. To overcome this drawback, some approaches
have been proposed in [5], [6].

The methods based on phase-locked loops (PLLs) are pop-
ular because they are often easy to implement digitally and
offer a robust performance. These approaches can generally
be understood as a standard PLL with a filtering stage, which
is used to improve the PLL speed/accuracy trade-off. Indeed,
the main difference among the PLL based techniques often
lies in the type and location of the filtering technique they
use in their structure. The moving average filter (MAF) [7],
the notch filter [8], the repetitive regulator [9], the dq-frame
cascaded delayed signal cancellation operator [10]-[12] and
the conventional low-pass filters (LPFs) [13] are popular in-
loop filtering stages, and the αβ-frame cascaded delayed signal
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cancellation [10], [11], [14] and the complex coefficient filters
[15] are well-known prefiltering stages.

The discrete Fourier transform (DFT) based approaches are
also widely used in practice for the estimation of grid voltage
parameters. The implementation of these techniques, however,
demands a high computational effort. The DFT computational
burden, of course, can be reduced by using a recursive im-
plementation [16]. The recursive DFT, however, suffers from
some stability issues, which demands some modifications to
avoid them [17].

A modified demodulation based technique (MDT) has re-
cently been presented in [18], which aims to deal with the
shortcomings of available approaches and provide an accurate
estimation of the grid voltage fundamental parameters in
single-phase applications. The objective of this letter is to
provide a detailed analysis of this technique. The small-signal
modeling and stability analysis of this technique are also
carried out and some modifications to enhance its performance
are proposed.

II. OVERVIEW AND ANALYSIS OF CONVENTIONAL AND
MODIFIED DEMODULATION TECHNIQUES

Fig. 1 shows the schematic of the conventional demodu-
lation technique (CDT) for the grid voltage amplitude and
frequency estimation in single-phase systems. In this tech-
nique, the single-phase system is considered as an unbalanced
two-phase system, in which the first phase (α-axis voltage
component) is the single-phase voltage signal and the second
phase (β-axis voltage component) is zero. The αβ voltage
components are then transformed to the synchronous (dq)
reference frame rotating by applying the Park’s transformation
with a rotating angle θn =

∫
ωndt, where ωn is the nominal

value of the grid frequency. Assuming the single-phase grid
voltage is as

v(t) = V cos (θ) (1)

where V and θ =
∫
ωdt are the amplitude and phase-angle of

the gird voltage, respectively, and ω is the grid frequency, the
dq-axis voltage components can be obtained as[

vd (t)
vq (t)

]
=

[
cos (θn) sin (θn)
− sin (θn) cos (θn)

] [
v(t)

0

]
=

[
V
2 cos (θ − θn) + V

2 cos (θ + θn)
V
2 sin (θ − θn) − V

2 sin (θ + θn)

]
. (2)

As (2) shows, vd and vq both are consisted of a (near) dc
term and a (near) double frequency term. To attenuate these
double frequency terms, vd and vq are passed through two
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Fig. 1. Schematic of the CDT.

LPFs. Assuming these LPFs are ideal, their outputs in steady-
state can be expressed as

v̄d(t) =
V

2
cos (θ − θn + ϕLPF) (3)

v̄q(t) =
V

2
sin (θ − θn + ϕLPF) (4)

where ϕLPF is the phase shift caused by the LPF under
off-nominal grid frequencies. Applying the inverse tangent
function to the LPFs output signals gives the phase error
signal θe = θ − θn + ϕLPF. The grid voltage frequency is
then obtained by differentiating from θe and adding ωn to the
result. The grid voltage amplitude, on the other hand, can be
calculated as 2 times the square root of the sum of the squares
of the LPFs output signals.

The main drawback of the CDT is that the estimated
qualities by this technique suffer from a considerable double-
frequency oscillatory error, because the LPFs are not able to
completely block the double frequency terms of vd and vq .
To deal with this drawback, the MDT is proposed in [18].
Fig. 2 shows the schematic of this technique, in which a
double frequency cancelation (DFC) unit to reject the double
frequency terms of vd and vq is used. It should be mentioned
that the DFC unit in this technique is almost the same as
the double frequency and amplitude compensation (DFAC)
structure proposed in [19]. The operating principle of the DFC
unit and MDT is briefly explained in what follows.

In the MDT, the αβ-axis voltages are transferred to a
synchronous reference frame rotating at the same angular
frequency as the grid voltage angular frequency. Therefore,
the dq-axis voltages in this technique can be expressed as

vd (t) =
V

2
cos

θe︷ ︸︸ ︷(
θ − θ̂

)
+
V

2
cos
(
θ + θ̂

)
(5)

vq (t) =
V

2
sin
(
θ − θ̂

)
− V

2
sin
(
θ + θ̂

)
(6)

or equivalently

vd (t) =
V

2
cos (θe)+

V

2
cos (θe) cos

(
2θ̂
)
−V

2
sin (θe) sin

(
2θ̂
)

(7)

vq (t) =
V

2
sin (θe)−

V

2
sin (θe) cos

(
2θ̂
)
−V

2
cos (θe) sin

(
2θ̂
)
.

(8)
As (7) and (8) show, vd and vq both are consisted of a dc term
and two double frequency terms. Notice that the amplitudes
of these double frequency terms are the same as dc terms of
vd and vq and that the LPFs output signals, i.e., v̄d and v̄q ,
provide an estimation of these dc terms. Therefore, the double
frequency terms of vd and vq can be easily cancelled out by

Fig. 2. (a) Schematic of the MDT. (b) DFC unit.

Fig. 3. Alternative mathematically equivalent representation of the MDT.

reconstructing and subtracting them from vd and vq , as shown
in Fig. 2(b). A more detailed description of the DFC unit can
be found in [19].

After cancelling the double frequency terms of vd and vq
and extracting their dc terms, the amplitude normalization
task is carried out by calculating atan2(v̄q, v̄d). Using the
arctangent function in the amplitude normalization is also
useful to remove (or at least to reduce) the nonlinearity of
the control loop [20], [21]. The steady-state output of the
arctangent function is the phase error signal θe = θ− θ̂, which
is differentiated and subsequently passed through an integrator
with gain k. The developers of the MDT [18], however,
do not explain why they have do that. Indeed, cascading a
differentiator and an integrator with gain k is mathematically
equivalent with a simple gain k. Considering this fact, the
alternative mathematically equivalent representation of the
MDT can be obtained as shown in Fig. 3. A comparison
of this structure with the quasi-type-1 PLL (QT1-PLL) [20],
shown in Fig. 4, clearly indicates that the MDT is actually
the single-phase version of the QT1-PLL, but with a DFC
unit. Therefore, to better understand the MDT performance,
the QT1-PLL operating principle is explained in the following.
Before that, a general background on developing the QT1-PLL
is presented.

Conventional PLLs typically employ a proportional-integral
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Fig. 4. Schematic of the QT1-PLL [20].

Fig. 5. Small-signal model of the MDT.

(PI) controller as their loop filter (LF). This structure, however,
has a limited filtering capability. To further improve the
PLL filtering ability, an additional LPF (e.g., a MAF) can
be incorporated into the control loop. This additional LPF,
however, increases the phase delay in the PLL control loop
and, therefore, slows down its dynamic response. To deal with
this problem, the QT1-PLL structure is suggested in [20]. In
the QT1-PLL, the PI controller is replaced with a simple gain,
which reduces the phase delay in the PLL control-loop, but
makes the PLL a type-1 control system. This means that the
PLL cannot track frequency drifts with a zero phase-error. To
solve this issue, the arctangent output signal is added to the
PLL output. This act provides an additional open-loop pole at
the origin and, therefore, enables the PLL to achieve a zero
phase error in the presence of frequency drifts [20].

III. SMALL-SIGNAL MODELING AND STABILITY
ANALYSIS

As shown in the previous Section, the MDT can be un-
derstood as the single-phase version of the QT1-PLL, but
with the DFC unit. On the other hand, the DFC unit, which
acts like a notch filter with notch frequency at twice the grid
fundamental frequency, has a negligible effect on the MDT
dynamics and stability on the condition that the MDT closed-
loop bandwidth is sufficiently smaller than 2ω. Considering
these facts, the same small-signal model as the QT1-PLL
model can be considered for the MDT. The QT1-PLL small-
signal model has already been derived in [20]. Fig. 5 shows the
MDT small-signal model, in which ∆ denotes perturbations
around the nominal operation point.

To evaluate the accuracy of the derived model, a perfor-
mance comparison between the MDT and the model under
a phase-angle jump of +40 and a frequency step change of
+2 Hz is carried out. In this evaluation, the same parameters
as those designed in [18], i.e., a third-order LPF with cutoff
frequency of ωn/3 and k = 25, are considered. Fig. 6 shows
the obtained results. As it can be observed, the derived model
accurately predicts the MDT dynamic behavior.

Fig. 7 illustrates the open-loop Bode plot of the MDT using
the same parameters designed in [18]. Notice that the open-
loop transfer function can simply be obtained by rearranging
the MDT small-signal model to its equivalent classical feed-
back form, as shown in Fig. 8. Anyway, as it can be observed

Fig. 6. Accuracy assessment of the MDT small-signal model.

Fig. 7. Open-loop Bode plot of the MDT with the same parameters designed
in [18].

in Fig. 7, the crossover frequency is rather low, which implies
the MDT suffers from a rather slow dynamic response. This
fact was already confirmed in the accuracy assessment of the
small-signal model. The stability margins of the MDT are
acceptable, but a higher phase margin (PM) to reduce the phase
overshoot during phase-angle jumps is favourable. The MDT
phase overshoot when using the parameters designed in [18]
is around 50%.

IV. MDT PERFORMANCE ENHANCEMENT

Improving the MDT dynamic performance and stability
margin while maintaining a good harmonic filtering capability
for that is the aim of this section. To accomplish this objective,
using two cascaded MAFs instead of the third-order LPF in

Fig. 8. Classic feedback form of the model shown in Fig. 5.
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Fig. 9. (a) PM and (b) 2% settling time of the MDT as a function of k.

the MDT structure is suggested in this letter. The s-domain
transfer function of the MAF is

GMAF(s) =
1 − e−Tws

Tws
(9)

where Tw is its window length.
There are two typical choices for the MAF window length:

1) Tw = T/2 (T is the grid fundamental period) that enables
the MDT to block the odd-order harmonics of the grid voltage,
which appear as even-order harmonics in its control loop; and
2) Tw = T that enables the MDT to block both even-order and
odd-order harmonics of the grid voltage [22]. Considering that
the even-order harmonics of the grid voltage are often small
and Tw = T significantly increases the phase delay in the
MDT control loop, Tw = T/2 is selected in this letter.

Equations (10) and (11) describes the open-loop and closed-
loop transfer functions of the MDT when using two cascaded
MAFs as the LPF

Gol(s) = G2
MAF(s)

s+ k

s (1 −G2
MAF(s))

(10)

Gcl(s) = G2
MAF(s)

s+ k

s+ kG2
MAF(s)

. (11)

Using these transfer functions, the variations of the MDT PM
and 2% settling time (in response to a phase-angle jump) as
a function of k can be obtained as shown in Fig. 9. As it can
be observed, minimizing the settling time requires selecting
a value around 50 for k. k = 48 is chosen in this letter,
which provides a PM around 40◦, a 2% settling time around
2.5 cycles of the nominal frequency, and a phase overshoot
around 37%.

V. NUMERICAL RESULTS

In this section, a performance comparison between the MDT
structure proposed in [18] (hereafter called MDT1) and the

Fig. 10. Simulation results under the test case 1.

one proposed in this letter (from now on called MDT2) is
carried out. Notice that the MDT2 has the same structure as
that shown in Fig. 3, but the LPF block in that is replaced with
two-cascaded MAFs with window length Tw = T/2 = 0.01 s.
The gain k in the MDT1 and MDT2 is 25 and 48, respectively.

Five test cases are designed:

• Test case 1: The grid voltage undergoes a +40◦ phase-
angle jump.

• Test case 2: The grid voltage experiences a +2 Hz
frequency step change.

• Test case 3: The grid voltage is harmonically distorted.
The total harmonic distortion (THD) of the grid voltage
is 10.67% in this test.

• Test case 4: The grid voltage undergoes a 0.5 pu voltage
sag.

• Test case 5: The grid voltage experiences a +10 Hz/s
frequency ramping change.

Fig. 10 and 11 show the simulation results under the test
cases 1 and 2, respectively. As it can be observed, the MDT2
provides a much faster dynamic response than the MDT1:
The MDT2 2% settling time, which is around 2.5 cycles of
the nominal frequency, is almost half of that of the MDT1.
The MDT2 also offers a rather considerable decrease in the
phase overshot and peak phase error under the test cases 1
and 2, respectively. The estimated frequency by the MDT2,
however, experiences a larger transient under the test case 1.
The reason is that the MDT2 has a higher bandwidth than
MDT1, which results in an increased coupling between its
phase and frequency variables. This issue has been discussed
in detail in [23].

Fig. 12 illustrates the simulation results under the test case
3. As shown, the MDT2 provides a higher filtering capability
than the MDT1 when the grid frequency is close to its nominal
value, however its performance tends to worsen in the presence
of large frequency drifts. According to the European standard
EN50160, the grid frequency should be within the range of
50 ± 0.5 Hz in 99.5% of a week. Considering this fact, it
can be concluded that the MDT2 is a better option from the
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Fig. 11. Simulation results under the test case 2.

Fig. 12. Simulation results under the test case 3.

harmonic filtering point of view.
Simulation results under the test cases 4 and 5 can be

observed in Fig. 13 and 14, respectively. Again, it can be
observed that the MDT2 provides a much faster dynamic
response. Providing a considerably lower phase error by the
MDT2 during the frequency ramping interval is also notice-

Fig. 13. Simulation results under the test case 4.

Fig. 14. Simulation results under the test case 5.

able.

VI. CONLCUSION

In this letter, an analysis of the MDT was carried out. It was
shown that the MDT is a single-phase version of the QT1-PLL,
but with a DFC unit. It was also shown that the same small-
signal model as the QT1-PLL model can be considered for
the stability analysis and dynamic performance evaluation of
the MDT. Some modifications to enhance the stability margin
and dynamic performance of the MDT was then proposed.
The effectiveness of these modifications was verified using
numerical results.
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