Analysis of DPOAE fine structure of 12 symphony orchestra musicians

Reuter Andersen, Karen; Ordoñez Pizarro, Rodrigo Eduardo; Hammershøi, Dorte

Publication date:
2005

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: januar 31, 2019
Analysis of DPOAE fine structure of 12 symphony orchestra musicians

Karen Reuter, Rodrigo Ordoñez and Dorte Hammershøi
Department of Acoustics, Aalborg University, Denmark

1. Objectives
In this study distortion product otoacoustic emission (DPOAE) are measured with high frequency resolution for a group of musicians before and after rehearsal. The DPOAE fine structures are analyzed and described by three parameters (ripple width, ripple height, number of ripples). Hearing thresholds are also measured before and after rehearsal. It is analyzed, whether the exposure during rehearsal causes temporary changes in the auditory system, e.g., a temporary threshold shift (TTS) or changes in the DPOAE.

2. Background
When DPOAEs are measured with sufficient high frequency resolution, DPOAE fine structures are revealed with almost equidistant minima and maxima. It has recently been suggested [1] that it is the prevalence and character of the fine structures that best correlate with the state of the hearing.

3. Methods

DPOAE measurement
- ILD90 system, Otodynamics
- 2f1-2f2 DPOAE
- LV1/2=65/45 dB
- f2/f1=1.22
- 903 Hz > f2 > 6201 Hz
- f1 = 12 Hz for f2 < 3 kHz
- f1 = 24 Hz for f2 > 3 kHz

Subjects
- 12 musicians, aged 31-55 (Mean 39)
- 9 female, 3 male
- 4 viola
- 3 violoncello
- 2 cello
- 2 clarinet
- 1 trombone

DPOAE fine structure measurement (preliminarily reported in [3])
- Determination of maxima and minima of DPOAE fine structure ripples
- Ripple width: Frequency difference between two minima
- Ripple height: Level difference between a maximum and the mean of the minima
- Number of ripples: Number of ripples >3 dB in height per 1/3 octave

Time schedule of experiment. One subject participated per rehearsal day. Each session lasted 90 minutes, 30 minutes for the pure-tone audiometry and 60 minutes for the measurement of DPOAE fine structure. The order of testing either hearing threshold or DPOAE first was balanced.

DPOAE fine structure measurement for one subject. The example features fine structure characteristics with deep notches and high peaks.

4. Results

The following figures show the fine structure parameters ripple width and ripple height averaged over 12 subjects in 1/8 octave bands. The errorbars are the standard deviations (STD) between subjects.

5. Conclusions
From the preliminary results of the data, neither the hearing threshold nor the DPOAE reflect a change in the state of the hearing of the musicians by the end of a typical day of rehearsal. When comparing the fine structure characteristics of the group of musicians to a younger group of students, the students have a higher prevalence of DPOAE fine structure ripples than the musicians.

Acknowledgements
Financial support of the William Demant Foundation (Oticon) and the Danish Technical Research Council is sincerely acknowledged. The cooperation with Aalborg Symphony Orchestra is greatly acknowledged. The authors would like to thank Palle Kjeldgaard and Sonja Abildgaard for their commitment and efforts in planning and all musicians and students for participating in this experiment.

References