Fabrication and formation mechanism of porous VO2 thin films with superior thermochromic performances
Tao, H.Z.; Zhu, B.Q.; Zhang, W.Y.; Wan, M.N.; Zhao, C.L.; Zhao, X.J.; Yue, Yuanzheng

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Fabrication and formation mechanism of porous VO$_2$ thin films with superior thermochromic performances

Haizheng Taoa, Benqin Zhua, Wenyuan Zhanga, Meinan Wana, Changlin Zhaoa, Xiujian Zhaoa, Yuanzheng Yuea,c

aState Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
bSection of Chemistry, Aalborg University, 9000 Aalborg, Denmark

Keywords: Porous film; Vanadium Oxide

VO$_2$ is the most ideal thermochromic material, which is often used for making smart windows with a transition temperature close to room temperature. Its thermochromic performances can be enhanced by introducing well-distributed pores. However, it is a challenge to form well-distributed pores in the high pure M/R phase VO$_2$ film. Here we report on a novel, cost effective one-step method to create well-distributed pores while ensuring the formation of relatively high pure M/R phase VO$_2$ thin films. The derived single-layer thin film exhibits superior thermochromic performances, e.g., high luminous transmittance (~60%) and large solar modulating ability (~8.5%). These findings open a new vista for fabrication of porous VO$_2$ thin films with outstanding thermochromic properties. We also present some results about the thermal, mechanical and chemical stabilities of the thin film and discuss the mechanism of the interconnection between the film and the glass substrate.

Acknowledgements: NSFC(Nos. 51372180, 51032005, 51461135004), NCET(No. NCET-11-0687), NSF of Hubei Province(No. 2013CFA008), the Fundamental Research Funds for the Central Universities (Wuhan University of Technology, No. 145201012) and the key technology innovation project of Hubei Province (No. 2013AEA005, 2013AAA005).