Inorganic and Hybrid Glasses From Zeolitic Frameworks
Greaves, G.N.; Bennett, T.D.; Tan, J.C.; Yue, Yuanzheng

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: december 11, 2018
Inorganic and Hybrid Glasses From Zeolitic Frameworks

G. N. Greavesa,b, T. D. Bennetta, J. C. Tanc, Y. Z. Yued

aDepartment of Materials Science, University of Cambridge, CB3 0FS, UK
bState Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 430070, China
cDepartment of Engineering Science, University of Oxford, UK
b,dDepartment of Chemistry and Bioscience, Aalborg University, Denmark

Keywords: Zeolites, Metal-Organic Frameworks, Melt-quenched Glasses, Amorphization

Zeolites are metastable crystals with enthalpy greater than melt-quenched glasses of the same composition1. Since 2003 we have pioneered the collapsing of zeolites to create amorphous phases2. These glasses form via low energy routes - close to the glass transition T_g at ambient pressure, or with modest pressures at room temperature. By following such processes dynamically we discovered a low density low enthalpy amorphous phase approximating to a ‘perfect glass’, being topologically equivalent to the starting zeolite and sharing collective THz vibrations3. Amorphization then proceeds via a liquid-liquid transition to a high density polyamorph of higher enthalpy. Subsequent thermal processing, often results in crystallization before final melting, from which a melt-quenched glass can be formed – all with the same inorganic composition. Very recently we have discovered4 that similar processes occur in metal organic frameworks (MOFs)5, when they are thermobarically stressed. These procedures are leading to new glasses, including melt-quenched hybrid glasses, with organic-inorganic structures - for example, Zn2+ nodes interlinked by imidazolate (C\textsubscript{3}H\textsubscript{3}N\textsubscript{2}-) ions. Moreover, by connecting amorphization and melting phenomena together with respect to network topology, hypothetical melting points, based on predicted T_g values, can be used to explain why some MOF structures have achievable melting temperatures while others decompose first.