OR237
Tissue-factor induced allosteric enhancement of factor VIIa activity by stabilization of segment 215–219 and taming of W215 flexibility
Sorensen AB1,2, Madsen J1, Svensson A1,2, Stennicke HR1,2, Østergaard H1,2, Overgaard MT1,2, Olsen OH1 and Gandhi PS1
1Haemophilia Biochemistry, Novo Nordisk A/S, Måløv; 2Department of Chemistry and Bioscience, Aalborg University, Aalborg; 3Department of Chemistry, Technical University of Denmark, Lyngby; 4Novo Nordisk A/S, Måløv; 5Novo Nordisk A/S, Søborg, Denmark
*

Background: The complex of coagulation factor VIIa (FVIIa) and tissue factor (TF) initiates blood coagulation upon vascular injury. Previous work has shown that TF binding to FVIIa generates new exosites for macromolecular substrates and induces allosteric changes in and around the FVIIa active-site, leading to enhanced FVIIa catalytic efficiency. Structural studies have added detailed molecular insights into the TF binding epitope, but have not elucidated the extensive and long-range structural effects in FVIIa.

Aims: To understand the molecular basis of TF-mediated allosteric regulation of FVIIa activity.

Methods: In the current study we have produced 3 FVIIa variants in which the 170-loop has been replaced with the corresponding loop from trypsin. The resulting variants have been investigated using a combined approach of functional and biochemical characterization, x-ray crystallography and molecular dynamics (MD) simulations.

Results: The functional characterization and x-ray crystal structures of these FVIIa variants suggest that stabilization of the segment 215–219 leads to maturation of the primary specificity pocket and enhanced catalytic efficiency, independent of protease domain N-terminus insertion. MD simulations support the experimental results and vouch for the direct involvement of W215 in TF-induced allosteric changes in the FVIIa protease domain. Our results are further corroborated by novel tryptophan quenching studies and solvent accessible surface area calculations.

Conclusion: We propose that in the absence of TF, FVIIa exists in a conformation where segment 215–219 is highly flexible, capable of occupying either a collapsed or an open conformation, functioning as an activity regulating mechanism. In addition to other changes, the binding of TF to FVIIa stabilizes segment 215–219 in an open conformation leading to enhanced functional properties of FVIIa. Taken together, our results shed new insights into molecular mechanism of TF-induced allosteric enhancement in FVIIa activity.

OR239
Epidermal tissue factor in wound healing
Chappell E1, Monroe DM1, Hoffman M2 and Mackman N1
1McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill; 2Pathology, Duke University, Durham, USA
*

Background: Healing of skin wounds relies on several biological processes, including hemostasis, inflammation, cell proliferation and tissue remodeling. It has been hypothesized that tissue factor (TF), an initiator of coagulation and regulator of inflammation, plays a role in the re-epithelialization of skin wounds. To investigate this function, wound healing was studied in Keratin-14 Cre+ TFβ8 mice, which do not produce TF in their keratinocytes.

Aims: To confirm that a lack of epidermal tissue factor influenced wound healing and to explore the mechanisms underlying this defect.

Methods: Full thickness dermal wounds were placed on the backs of K14 Cre+ TFβ8 mice and Cre- littermate controls using a 3-mm biopsy punch. The wound areas and number of healed mice were observed daily. Wound samples were collected during the course of healing for histological analyses and primary keratinocyte cultures were used to study signaling.

Results: Cre+ mice exhibited deletion of TF in the epidermis and the leading edge of healing wounds but maintained TF expression around blood vessels. Cre+ mice had larger wounds and slower healing times than Cre- mice and were more prone to bleeding.

Conclusion: Epidermal tissue factor is required for normal wound healing and influences bleeding, wound size and healing time. Further studies will investigate the cellular players underlying this phenotype.

Disclosure of Interest: None declared.

OR238
Relationships of circulating coagulation factor VIIa (FVIIa) with common single nucleotide polymorphisms and risk of incident ischemic stroke: the Cardiovascular Health Study
Olson NC1, Lange LA2, Reiner AP3 and Tracy RP1
1Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington; 2Genetics, University of North Carolina School of Medicine, Chapel Hill; 3Epidemiology, University of Washington, Seattle, USA
*

Background: A small but variable fraction (~1%) of coagulation factor VII circulates as an active protease (FVIIa) in human plasma. Data for FVIIc, (influenced by both FVIIa and total FVII), as a cardiovascular disease (CVD) risk factor has been inconsistent. To date, no studies have evaluated the genetic and epidemiologic associations of FVIIa.

Aims: Evaluate the associations of FVIIa with common single nucleotide polymorphisms (SNPs) and incident CVD events in a prospective population-based cohort of older adults.

Methods: FVIIa was measured by commercial clot-rate assay (Stago) in citrated plasma of ~3500 men and women ≥ 65-years from the Cardiovascular Health Study. Associations of FVIIa with ~50K SNPs were evaluated using the IBCv2 genotyping array. Cox proportional hazards models were used to calculate associations with incident CVD outcomes (median follow-up 14.5 years).

Results: FVIIa was correlated with FVIIc (Pearson r² = 0.44; P < 0.0001). Mean FVIIa was higher in women than men [57.9 vs. 45.9 mU mL−1] (P < 0.0001) and in European-Americans (EAs) than African-Americans (P < 0.05). In EAs, 15 SNPs located in the F7/F10 locus (chromosome 13) and 7 SNPs located in the PROCR locus (chromosome 20) were significantly associated with FVIIa. The top F7 SNP, rs6046 (P < 4.9 × 10−8), was associated with 23.8 mU mL−1 lower FVIIa per minor allele; the top PROCR SNP, rs867186 (P < 1.7 × 10−12), was associated with 7.5 mU mL−1 higher FVIIa per minor allele. After adjustment for CVD-risk factors, FVIIa was associated with incident ischemic stroke (P = 0.03). Those in the highest FVIIa tertile [≥ 61 mU mL−1] had a 29% increased risk vs. those in the lowest tertile [< 42 mU mL−1]. There were no significant associations of FVIIa with incident MI, CHD, or CVD-related mortality.

Conclusion: These results support the importance of the F7/F10 and PROCR loci on variation in circulating FVIIa, and suggest FVIIa may be a risk factor for ischemic stroke in older adults.

Disclosure of Interest: None declared.