Selection of a typical human subject for binaural recording

Møller, Henrik; Jensen, Clemen Boje; Hammershøi, Dorte; Sørensen, Michael Friis

Published in:

Publication date:
1996

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: december 18, 2018
Selection of a typical human subject for binaural recording

H. Møller, C. B. Jensen, D. Hammershøi, M. F. Sørensen (Acoustics Laboratory, Aalborg University, Fredrik Bajers Vej 7B, DK-9220 Aalborg Ø, Denmark)

1. Introduction. A previous study has shown that a localization performance identical to that of real life can be obtained with individual binaural recordings [1]. The investigation was carried out as an identification experiment with 19 loudspeakers placed in various directions relative to the subject seated in a listening room according to IEC 268-13. The same investigation showed that if non-individual recordings are used, performance deteriorates, most obviously seen for the sources in the median plane. The present investigation was carried out to show whether improved results can be obtained if the non-individual recordings originate from a selected, typical human subject.

2. Method. The setup was the same as in the previous investigation. 20 subjects participated in three experiments: A) Real life listening, B) listening to recordings made at the entrance to the blocked ear canal of 30 randomly chosen humans, and C) listening to the recordings from one selected human, the selection being based on the results of exp. B. The binaural recordings in exp. B and C were reproduced via an FEC headphone [2], equalized individually for each listener to a flat frequency response when measured at the blocked ear canal.

3. Results. A total of 9% directional errors were observed in real life (exp. A). With recordings from randomly chosen humans (exp. B), a total of 21% directional errors were seen, ranging from 15-27% depending on "recording head". The recording head that gave the lowest number of directional errors (subject AVH) was used for exp. C, where a total of 12% directional errors were seen. It is concluded that considerable improvements can be obtained by proper selection of recording head geometry.

References