Congenital ataxia, hemiplegic migraine due to a novel mutation of CACNA1A
Frusciante, Roberto; Capuano, Alessandro; Travaglini, Lorena; Zanni, Ginevra; Vigevano, Federico; Bertini, Enrico; Valeriani, Massimiliano

Published in:
Journal of Headache and Pain

DOI (link to publication from Publisher):
10.1186/1129-2377-16-S1-A146

Creative Commons License
CC BY 4.0

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
P016. Congenital ataxia, hemiplegic migraine due to a novel mutation of CACNA1A: a case report

Roberto Frusciante¹, Alessandro Capuano¹, Lorena Travaglini², Ginevra Zanni², Federico Vigevano¹, Enrico Bertini², Massimiliano Valeriani¹,³*

From Abstracts from the 1st Joint ANIRCEF-SISC Congress
Rome, Italy. 29-31 October 2015

Background
The CACNA1A gene encodes the pore forming alpha-1A subunit of neuronal voltage-dependent P/Q-type Ca (2+) channels. Mutations in this gene result in clinical heterogeneity, including hemiplegic migraine, episodic ataxia, or progressive chronic conditions.

Case report
An 8-year-old boy was admitted to our neurological unit due to an acute onset of left hemiparesis developed after a febrile episode. He also complained of headache with migraine characteristics. Brain MRI showed right hemispheric oedema. The hemiparesis disappeared completely after 1 week, and after steroid treatment. The patient was already known to our clinic since he was 2 years old when he was referred to us for a motor and cognitive developmental delay and for a cerebellar syndrome diagnosed as congenital ataxia. In the past all metabolic, biochemical and genetical analyses resulted negative. Serial brain MRI showed a progressive cerebellar atrophy. A CACNA1A gene mutation was hypothesised and sequence analysis revealed a heterozygous mutation c.4013C>T (p.I1338T) affecting the S4 segment and potentially damaging to the protein. This was a de novo mutation because it was not found in either parent.

Conclusions
To the best of our knowledge this mutation of the CACNA1A gene has not been reported in the literature. CACNA1A mutations present with a wide clinical spectrum. Congenital ataxia, mental retardation, and hemiplegic episode can be the presenting signs of CACNA1A mutations.

Written informed consent to publish was obtained from the patient(s).

Authors' details
¹Headache Center, Neurology Unit, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy. ²Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy. ³Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark.

Published: 28 September 2015

doi:10.1186/1129-2377-16-S1-A146

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ⇒ springeropen.com

© 2015 Frusciante et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.