P016. Congenital ataxia, hemiplegic migraine due to a novel mutation of CACNA1A: a case report

Roberto Frusciante¹, Alessandro Capuano¹, Lorena Travaglini², Ginevra Zanni², Federico Vigevano¹, Enrico Bertini², Massimiliano Valeriani¹,³*

Abstracts from the 1st Joint ANIRCEF-SISC Congress
Rome, Italy. 29-31 October 2015

Background
The CACNA1A gene encodes the pore forming alpha-1A subunit of neuronal voltage-dependent P/Q-type Ca (2+) channels. Mutations in this gene result in clinical heterogeneity, including hemiplegic migraine, episodic ataxia, or progressive chronic conditions.

Case report
An 8-year-old boy was admitted to our neurological unit due to an acute onset of left hemiparesis developed after a febrile episode. He also complained of headache with migraine characteristics. Brain MRI showed right hemispheric oedema. The hemiparesis disappeared completely after 1 week, and after steroid treatment. The patient was already known to our clinic since he was 2 years old when he was referred to us for a motor and cognitive developmental delay and for a cerebellar syndrome diagnosed as congenital ataxia. In the past all metabolic, biochemical and genetical analyses resulted negative. Serial brain MRI showed a progressive cerebellar atrophy. A CACNA1A gene mutation was hypothesised and sequence analysis revealed a heterozygous mutation c.4013C>T (p.I1338T) affecting the S4 segment and potentially damaging to the protein. This was a de novo mutation because it was not found in either parent.

Conclusions
To the best of our knowledge this mutation of the CACNA1A gene has not been reported in the literature. Similar cases of a relatively long history of cerebellar ataxia, cognitive impairment and paroxysmal episodes are reported in the literature due to CACNA1A mutations. CACNA1A mutations present with a wide clinical spectrum. Congenital ataxia, mental retardation, and hemiplegic episode can be the presenting signs of CACNA1A mutations.

Written informed consent to publish was obtained from the patient(s).

Authors’ details
¹Headache Center, Neurology Unit, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy. ²Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy. ³Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark.

Published: 28 September 2015
doi:10.1186/1129-2377-16-S1-A146

© 2015 Frusciante et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.