Glass formation, structure and ionic conductivity in the AgI-Ag3PS4 pseudo-binary system

Qiao, A.; Tao, H.Z.; Ren, J.J.; Wang, P.P.; Yue, Yuanzheng

Published in:
The 24th International Congress on Glass - Abstracts

Creative Commons License
Unspecified

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Glass formation, structure and ionic conductivity in the AgI-Ag₃PS₄ pseudo-binary system

A. Qiao¹, H.Z. Tao¹, J.J. Ren², P.P. Wang¹, Y.Z. Yue¹,³

¹State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
²Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
³Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
qiaoang@whut.edu.cn

High-energy mechanical milling is a new technique for preparing amorphous materials¹, especially, used for fabricating superionic conductors with high ionic conductivity and low electronic conductivity. Among these superionic conductors, sulfide glass systems have shown higher ionic conductivity than their oxide counterparts². In this presentation, we report the glass formation of the xAgI-(1-x)Ag₃PS₄ (0 ≤ x ≤ 0.8) system under high-energy ball-milling conditions. These new types of glasses have never been prepared by the conventional melt-quenching technique. By means of Raman spectroscopy and solid-state magic angle spinning-nuclear magnetic resonance (MAS-NMR), we have studied both the short-range and the intermediate-range order structures of these new types of glasses, and their impact on the ionic conductivity. The complex impedance spectra show that the xAgI-(1-x)Ag₃PS₄ glassy system have relatively high room temperature ionic conductivity. It is found that a significant increasing turning in ionic conductivity with increasing x, indicating an intriguing evolution in structure in this series of glassy system. By exploring the short-range and the intermediate-range order structures and their relationship with ionic conductivity in this pseudo-binary glassy system, we reveal the mechanism of formation and evolution of the pathway for Ag⁺ ion moving. These glasses can be used as the superionic conductor, which is expected to have promising applications in the field of solid state electrolytes.

Acknowledgements: NSFC (Nos.51372180), NSF of Hubei Province (No.2013CFA008), and the key technology innovation project of Hubei Province (Nos.2013AEA005).