Inclusions of molecular communities

Lone Heimann

Investment in Public Heterogeneous o n s

www.cmc.aau.dk

Some magna sequencing, biofilm, and a range of microbial biofilms. Improved sampling was performed using the “All in a box” concept.

Aim

The objective was to study the prevalence and importance of poly-microbial communities in different biofilm-related diseases.

Methods

• The presence of microorganisms was investigated using traditional culture-dependent methods and a range of culture-independent molecular methods including cloning, Sanger sequencing, amplicon sequencing, fluorescence in situ hybridisation and quantitative PCR.

• Improved sampling was performed using the “All in a box” concept.

Acknowledgement

This study was supported by a grant for the PRIS Innovation Consortium from The Danish Council for Technology and Innovation (no. 09-052174) and by the Danish PWT Foundation- Investment in Public Welfare Technology (ABT-fonden). Collaborators are greatly acknowledged.

Introduction

Infections cause one-third of all death in the world and 60% of all infections are biofilm related. Formation of biofilm constitutes a challenge to current sampling, culture and treatment procedures. Standard microbiological cultures often underestimate the diversity of pathogens present in chronic infections. This is often due to a combination of inadequate growth conditions and presence of slow, fastidious, anaerobic or unculturable bacteria growing in biofilms. Application of various molecular techniques is often able to identify less common pathogens that may not grow readily on laboratory culture media.

Conclusions

• Inclusion of standardised sampling and several techniques improves diagnosis.

• Heterogeneous distribution of polymicrobial biofilm.

• Results are used for improvement of sampling and analysis in the clinic.

Results

• Number of specimens analysed were: endocarditis (n=18), chronic wound (n=14), central venous catheter (n=18), sinus samples from cystic fibrosis patients (n=19) and prosthesis-related infections (n=42).

• All species detected by cultivation were also identified by molecular methods.

• Poly-microbial communities were detected in 64% and 32% of the samples by molecular methods and culture, respectively.

• Molecular methods illustrated that all chronic wounds and sinus samples were poly-microbial as opposed to only 26% of endocarditis samples.

• Using standardised sampling and investigation of several specimens from each patient a heterogeneous distribution of the bacteria in the infections was clearly illustrated.

• Some species types were shown to be more appropriate than others for sampling of poly-microbial biofilm. For example, a larger bacterial diversity was generally observed in sonicated infections when compared to joint fluid.

• Tendencies were observed in numerous implant samples, where E. faecalis co-existed with Finegolda magna, P. acnes in several cases was overlooked by culture, and some normally easily cultured bacteria e.g. S. aureus, S. epidermidis and E. faecalis were not detected by culture methods which might be caused by biofilm mode of growth.