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Enhanced Phase-Shifted Current Control for

Harmonic Cancellation in Three-Phase Multiple

Adjustable Speed Drive Systems
Yongheng Yang, Member, IEEE, Pooya Davari, Member, IEEE, Firuz Zare, Senior Member, IEEE,

and Frede Blaabjerg, Fellow, IEEE

Abstract—A phase-shifted current control can be employed
to mitigate certain harmonics induced by the Diode Rectifiers
(DR) and Silicon-Controlled Rectifiers (SCR) as the front-ends
of multiple parallel Adjustable Speed Drive (ASD) systems.
However, the effectiveness of the phase-shifted control relies
on the loading condition of each drive unit as well as the
number of drives in parallel. In order to enhance the harmonic
cancellation by means of the phase-shifted current control, the
currents drawn by the rectifiers should be maintained almost
at the same level. Thus, this paper firstly analyzes the impact
of unequal loading among the parallel drives, and a scheme to
enhance the performance is introduced to improve the quality
of the total grid current, where partial loading operation should
be enabled. Simulation and experimental case studies on multi-
drive systems have demonstrated that the enhanced phase-shifted
current control is a cost-effective solution to multiple ASD
systems in terms of harmonic cancellation.

Index Terms—Harmonics, phase-shifted current control, Diode
Rectifiers (DR), Silicon-Controlled Rectifiers (SCR), three-phase
multiple drives, adjustable speed drives.

I. INTRODUCTION

HARMONICS and efficiency are always major issues

for industrial drives, including Adjustable Speed Drive

(ASD) systems [1]–[5]. At present, a lot of three-phase ASD

drives still employ 6-pulse-bridge “uncontrollable” Diode Rec-

tifier (DR) or “half-controllable” Silicon-Controlled Rectifiers

(SCR) as the front-ends [1], [6], [7], mainly because of

their low cost, simple control structure, and high reliability

during operation. Fig. 1 then exemplifies a two-drive system

consisting of a DR-fed and a SCR-fed drive. Basically, the

major responsibility of the front-end apparatuses is to con-

vert the alternative-current (ac) power to the direct-current

(dc) power that is used by the Variable-Frequency Converter

(VFC). However, this ac-dc rectification also brings significant

harmonic currents that distort the modern power grid, leading

to poor power quality. The harmonic currents appearing in

the grid can potentially: 1) trigger system resonance, 2) lower

the energy conversion efficiency, and 3) cause malfunctions of

the equipment that is also connected to the Point of Common

Coupling (PCC) [8]. Hence, regulations concerning harmonic
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Fig. 1. Schematic of a two-drive system consisting of a SCR and a DR,
where communication between the drives is also possible.

emissions by the drive systems are released and are also

continuously updated [9], [10].

At the same time, state-of-the-art strategies are also devel-

oped to address this harmonic issue in motor drive applications

[1], [5], [11], [12], which can simply be categorized into

four types, depending on the schemes that have been used.

As the simplest and the most straightforward way, passive

devices like ac and dc chokes can be installed [5], [13], [14].

However, large in size, heavy in weight, and high potentials of

resonance have hindered its extensive applications, especially

in high power drives. Alternatively, the use of phase-shifting

transformers as the very front-ends can increase the pulse

number of the ac-dc rectifiers [15]–[21], which in return will

significantly alleviate the distortion level at the grid side [22].

For instance, in [15], a 12-pulse rectifier front-end has been

formed with a multi-pulse transformer and auxiliary circuits,

which results in a Total Harmonic Distortion (THD) level of

the grid current being lower than 6% in a wide range of

loading levels. While in [20], an 18-pulse rectifier system has

been presented, leading to even lower THDs. Nevertheless, the

cost and overall volume of phase-shifting transformers are the

major drawbacks [18]. In addition, the active power filtering

techniques can be employed [7], [23]–[26]. The active power

filtering techniques seem as promising solutions in terms of

the effectiveness in harmonic mitigation, while at the cost of

overall control complexity. Such techniques are more suitable

in low-power applications [27]. Furthermore, there are hybrid

harmonic mitigation solutions reported in literature [21], [27],

[28]. In all, either increased system overall volume and/or the

control complexity can be observed in the above applications,

being a big barrier for size- and cost-effective ASD systems,

which however is still of high interest.

Additionally, as it has been emphasized in [1], [11], the

harmonic controllability or the harmonic mitigation flexibility
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Fig. 2. A two-drive system consisting of a SCR and a DR, where boost dc-
dc converters have been employed in the dc-links and im is the modulation
signal: (a) hardware schematic and (b) overall dc-link control structure.

is enhanced by the use of Power Factor Correction (PFC)

circuits. Fig. 2 shows the schematic of a PFC-based multi-

drive system, where dc-dc boost converters are adopted in the

dc-links. In contrast to the ac-dc configuration in Fig. 1, the

ac-dc and dc-dc configuration enables modulating the rectified

currents (i.e., is and id), as highlighted in Fig. 2(b). In this

way, the currents drawn by the rectifiers can be “controlled”

[22], [29], which possibly leads to improved current and power

quality. Furthermore, in the case of multi-drive systems as

demonstrated in Figs. 1 and 2, by shifting the SCR currents,

the quality of the total grid current (e.g., iga) can be enhanced

in terms of a lower THD [22], [30]–[32]. In particular, when

the rectified output currents (is and id) are controlled according

to Fig. 2(b) as purely dc currents at the same level, the total

grid currents will become multi-level, leading to a better THD.

However, the effectiveness of the phase-shifted current control

is significantly dependent on the total number of parallel drives

and the loading conditions of these drive units, which may

draw unequal currents (in terms of amplitude) from the grid.

Moreover, in practice, it is almost impossible always to ensure

that all the drive units are operating at the same loading

conditions. As a result, the harmonic mitigation enabled by

the phase-shifted current control is degraded.

To tackle this issue, this paper introduces an enhanced

phase-shifted control scheme, which can ensure that each

drive unit draws the same amount of currents from the grid

during operation. As a result, the quality of the total grid

current can be maximized by the phase-shifted current control.

Note that the enhanced control requires communication among

the parallel drives, where partial loading operation should be

possible. The rest of this paper is organized as follows. Firstly,

the basics of the phase-shifted current control in multi-drive

systems is introduced in § II. Then, the load adaptive control

strategy is proposed, followed by the experimental results in

§ III. It has been confirmed that the enhanced phase-shifted

current control is effective for harmonic cancellation in multi-

drive systems. Finally, § IV draws the conclusion.

G
ri

d
 v

o
lt

ag
e 

an
d
 

 r
ec

ti
fi

ed
 o

u
tp

u
t 

v
o
lt

ag
e

a bc

(120  )

a bc

In
p
u
t 

cu
rr

en
ts

fundamental

60

Fig. 3. Typical dc-link voltage, grid voltage and grid current waveforms of
a SCR-fed drive system, where the rectified output current (is) is controlled
as a dc current (Is) and αf is the firing angle.

II. ENHANCED PHASE-SHIFTED CURRENT CONTROL

A. Harmonic Characteristics of Six-Pulse Rectifiers

In order to develop advanced harmonic mitigation strategies,

the harmonic characteristics of six-pulse rectifiers should be

analyzed first as following. When the rectified output current

(e.g., is or id in Fig. 2) is controlled as purely dc denoted as

Is or Id, the corresponding input currents (i.e., isabc or idabc)

appearing in the grid will be rectangular waveforms [33], as

shown in Fig. 3 for a SCR unit. In the case of a DR unit,

similar square input currents can be obtained by setting αf = 0,

where all these rectangular currents should be shifted back by

a degree of αf and the rectified voltage of six-pulses (i.e., vd)

in that case is also indicated in Fig. 3. However, these square

currents contain high harmonics that are emitted to the grid.

Nevertheless, the square currents in Fig. 3 can be expressed

by summing up all harmonic currents as

isp(t) =

∞
∑

h

ihsp (t) (1)

with h = 1, 2, 3, · · · being the harmonic order, p = a, b, or c,

and ihsp being the h-th order harmonic component of the SCR

input current that is obtained through the Fourier analysis as

ihsp (t) = ahp cos (hθ) + bhp sin (hθ) (2)

where θ = ωt with ω being the angular grid frequency, ahp and

bhp are the corresponding Fourier coefficients. Since ihsp (t) is

half-wave symmetrical, there will be no even harmonics (i.e.,

ahp = bhp = 0 for even h) [33]. For odd harmonics (i.e., h = 1,

3, 5, · · · ), the Fourier coefficients can be obtained by

ahp=
2

π

∫ π

0

isp(t) cos (hθ) dθ, bhp=
2

π

∫ π

0

isp(t) sin (hθ) dθ

and further given as










ahp =
2Ir

hπ
[− sin(hαp) + sin(hαp + hβ)]

bhp =
2Ir

hπ
[cos(hαp)− cos(hαp + hβ)]

(3)

in which αp is the phase angle for the phase-p current in re-

spect to ωt = 0 (defined to be zero at the positive zero crossing

of the phase-a voltage vaN as shown in Fig. 3), and β = 120◦ is
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Fig. 4. Harmonic characteristics of the phase-a current drawn by a SCR (or
a DR when αf = 0): (a) input current and (b) harmonic distribution.

the conduction angle. According to Fig. 3, αa = αf + 30◦ for

the phase-a current with αf ≥ 0 being the SCR firing angle,

and thus αb = αa + 120◦ and αc = αa + 240◦.

Furthermore, according to (2) and (3), it is possible to

describe the rectangular current waveforms in a compact

format. For instance, the phase-a current of the SCR unit (i.e.,

isa and p = a) can also be given as

isa(t) =
2
√
3

π
Is

∞
∑

k

{

(−1)
n

k
sin[k(θ − αf)]

}

(4)

where k = 6n±1 is the harmonic order with k > 0 and n = 0,

1, 2, · · · . As a consequence, the magnitude (i.e., Iksa) of the

k-th individual harmonic component (represented by iksa(t)) of

the phase-a current can be obtained as

Iksa =
2
√
3

kπ
Is (5)

which can be used to analyze the harmonic characteristics as

well as to calculate the current THD:

THDisa
=

1

I1sa

√

∑

k 6=1

(Iksa)
2 × 100 = 31%. (6)

Subsequently, Fig. 4 gives the harmonic distribution of the

square currents drawn by a SCR unit, which indicates that the

rectangular currents drawn by the SCR or DR contains signif-

icant low-order harmonics, leading to a poor THD of around

31%. It should be noted that for both rectifiers such non-triplen

low-order harmonic currents are in inverse proportion to the

harmonic order (see, (5)), which should be lowered as much

as possible in three-phase ASD applications.

B. Phase-Shifted Current Control

As mentioned in the last paragraph, either a SCR-fed or a

DR-fed drive system will draw highly distorted currents from

the grid. In particular, the low-order harmonic currents (e.g.,

5th, 7th, 11th, and 13th) are not desired in such applications,

which however can be attenuated to certain levels by a phase-

shifted current control in the case of multi-drive systems.

To illustrate this harmonic mitigation strategy, the two-drive

system shown in Fig. 2 is adopted in the following, where the

h-th harmonic component of the input square currents for the

SCR unit can also be represented as a phasor,

Ihsp = Ihspe
jφh

sp (7)

Fig. 5. Harmonic characteristics of the phase-a currents at PCC in a two-
drive system (shown in Fig. 2) with the phase-shifted current control, where
αf = 36◦: (a) typical currents at PCC and (b) harmonic distribution of the
total grid current iga.

where Ihsp and φh
sp are the corresponding magnitude and phase,

respectively. According to (2) and (3), the magnitude Ihsp and

phase φh
sp can be calculated by

Ihsp =
[

(

ahp
)2

+
(

bhp
)2
]1/2

and φh
sp = arctan

(

−bhp/a
h
p

)

(8)

in which, as previously defined, h = 1, 3, 5, · · · is the

harmonic order, ahp and bhp are the Fourier coefficients of the

corresponding phase-p current. In a similar manner, the input

rectangular currents idp for the DR unit can be obtained by

substituting αf = 0 into (2) and (3). Hence, the h-th harmonic

component of the square currents (i.e., idp) for the DR unit

can also be expressed as phasors by

Ihdp = Ihdpe
jφh

dp (9)

with Ihsp and φh
sp being the corresponding magnitude and

phase, respectively, which can be obtained through (3) and

(8) considering αf = 0.

According to the superposition principle and Fig. 2, the

phasor of the h-th harmonic component of the total currents

appearing in the grid (igp) can be expressed as

Ihgp = Ihsp + Ihdp = Ihspe
jφh

sp + Ihdpe
jφh

dp (10)

indicating the possibility to cancel out the h-th harmonic

component of the total grid current. Specifically, the harmonic

cancellation by means of the phase-shifted current control can

be attained, only when

Ihsp = Ihdp and φh
sp = φh

dp − π (11)

which will result in Ihgp = 0, being the magnitude of the h-

th harmonic grid current. Fig. 5 exemplifies the effectiveness

of the phase-shifted current control, where the criteria in (11)

are accomplished. As a consequence that a phase-shift of 36◦

has been introduced to the SCR unit, all the harmonics of

fivefold the grid fundamental frequency (e.g., the 5th and the

25th harmonics) have been mitigated, leading to an improved

THD of around 16.4%.

It should be pointed out that, in practice, there will be

more than two drive units connected to the PCC (e.g., in

an office building). This further enables the possibility to

alleviate the harmonic generation to the grid by means of the
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Fig. 6. Simulation results of a multi-drive system considering various number
of drives under random loading conditions with linearly-designed firing angles
(i.e., αm

f
= (m− 1)/(N − 1)× 30 with m being the drive unit number and

N is the total number of drives), where T# represents the case number (for
T1, the loading of all drives is equal): (a) THD of the total grid current and
(b) power factor at PCC.

phase-shifting control [34], as even more levels of the grid

current can be achieved. In that case, the firing angles should

be designed specifically in such a manner that the resultant

THD of the grid PCC current will become independent of

the loading conditions without additional harmonic mitigation

devices (e.g., active power filtering systems). It is thus a size-

and cost-effective solution for multi-drive systems.

Fig. 6 then presents an example of a multi-drive system

(up to 20 drives) under random loading conditions, where the

firing angles are linearly assigned within 0◦ to 30◦. It can

be observed that, when the total drive number is above five

(i.e., N ≥ 5), both the THD level and power factor tend to be

bounded within a narrow bands (i.e., being independent of the

loading condition). Specifically, the THD of the grid current

will vary within 14% to 18%; the power factor will be around

0.95. However, for a multi-drive system consisting of two drive

units, the resultant THD of the grid current will vary in a wide

range (15% to 28%). To sum up, unequal loading will affect

the harmonic cancellation performance of the phase-shifted

control for a small number of parallel drives, which should be

addressed properly. The following thus introduces an enhanced

phase-shifted control scheme for two-drive systems.

C. Enhanced Phase-Shifted Control Strategy

Clearly, the latter criterion in (11) can be fulfilled by

introducing a phase shift to the SCR unit (i.e., αf = 180◦/h).

Fig. 7. Illustration of the improper phase-shift and unequal loading (the DR is
half-loaded in respect to the loading of the SCR) impacts on the phase-shifted
current control for the two-drive system (top: phasors of the 5th harmonics;
bottom: typical current waveforms).

However, in practical applications, the loading of the drives

is not equal, and thus the magnitudes of the currents drawn

by the rectifiers can not be maintained at the same level

(i.e., Ihs 6= Ihd ). Consequently, the performance of the phase-

shifted current control is affected, as aforementioned, and it

is further illustrated in Fig. 7. It can be observed in Fig. 7

that the THD of the total grid current has been brought to

18.6% in the case of unequal loading between the two drives

(the DR is half-loaded in respect to the SCR). Moreover, it

is also identified that the THD of the total grid current can

be minimized if the loading is equal. Fig. 8 demonstrates

that a minimum THD (red dot, 15.8%) of the grid current

is achieved, when the rectified output currents are at the same

level and αf = 32◦. In addition, the impact of unequal loading

is further recognized in Fig. 8 as a relationship of both the

rectified current level and the phase shift angle. Therefore,

in order to maximize the harmonic cancellation effectiveness

by the phase-shifted current control, an enhanced scheme is

developed in the following, which should ensure that both the

rectified output currents of the rectifiers are equal.

It is obvious that the firing angle αf controls the SCR input

current phase, and thus the average rectified voltage v̄s that

can be given as

v̄s = v̄d cosαf = 1.35VLL cosαf (12)

in which v̄d is the average rectified voltage of the DR unit and

VLL is the Root-Mean-Square (RMS) value of line-to-line grid

voltages (e.g., vab). On the condition that communication is

available in the multi-drive systems, the loading information

can then be obtained. A power ratio γ and a load current ratio

λ are then defined as

γ =
Ps

Pd

and λ =
īos

īod

(13)

with Ps = v̄os · īos and Pd = v̄od · īod being the boost output

powers, where īos and īod are the average load currents (boost

converter outputs), and v̄os and v̄od are the average dc-link

voltages. Ignoring the power losses on the boost converters

gives Ps ≈ v̄s · Is and Pd ≈ v̄d · Id. Thus,

γ =
v̄os · īos

v̄od · īod

≈ v̄s · Is

v̄d · Id

(14)
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Fig. 8. Performance of the phase-shifted current control for the multi-drive
system shown in Fig. 2, when the rectified current level Is/Id (defined
as current ratio) indicates that the two rectifiers draw different amounts of
currents from the grid.

in which Is and Id are the average rectified currents shown in

Fig. 2 (i.e., controlled as dc currents by the PFC circuits).

As a consequence, in order to maintain the rectified currents

at the same level (i.e., Is = Id), the following condition should

be maintained:
v̄os

v̄od

=
cosαf

λ
(15)

Hence, if the loading of the drives can be adjusted, the dc-

link voltage references v∗od and v∗os for the DR and the SCR

unit, respectively, can be set accordingly, which will fulfill

the condition in (15). As aforementioned, the communication

between the two drive units is required in order to imple-

ment (15) in the drive system. It will in return enhance the

performance of the phase-shifted current control. Notably, the

enhanced phase-shifted control actually “forces” the SCR unit

to operate at partial loading in regards to the loading of the

DR system:

Ps = Pd cosαf (16)

However, seen from a practical application standpoint, it

is almost impossible to achieve the loading of two drives

according to (16), although most of the drives are rarely (or

not always) operating at rated conditions. Alternatively, in

a multi-drive system consisting of several drive units (less

than five) with boost converters in the dc-links, certain SCR-

fed drive systems can be grouped with the same firing angle

according to the loading of the rest drives. In that case, it

is still possible to maintain the power relationship of (16).

Otherwise, the firing angle should be adjusted according to the

loading. Additionally, in a multi-drive system (even more DR-

fed and/or SCR-fed ASD systems of unequal loading), the flex-

ibility of power quality maximization can be enhanced, where

similar grouping configuration can be applied, thus leading to

improved current quality. While in such applications, the firing

angles for the SCR drives can also be optimally assigned in

order to minimize the harmonic emissions.

TABLE I
PARAMETERS OF THE MULTI-DRIVE SYSTEM (FIG. 2).

Parameter Symbol Value

DC-link inductor Ls, Ld 2 mH

DC-link capacitor Cs, Cd 470 µF

Grid frequency fg 50 Hz

Grid phase voltage (RMS) vabc, N 220 V

Grid impedance Zg Lg , Rg 0.18 mH, 0.1 Ω

PI dc-link voltage controller kp, ki 0.1, 10

III. RESULTS

In order to verify the effectiveness of the enhanced phase-

shifted current control, experiments have been firstly con-

ducted on a two-drive system referring to Fig. 2, where it

is assumed that the loading of the drives can be adjusted. The

control algorithms are implemented in digital signal processors

(Texas Instruments TMS320F28335), where hysteresis and

Proportional Integrator (PI) controllers are adopted as the

rectified current and dc-link voltage controllers in Fig. 2,

respectively (i.e., to control the rectified currents, is and id,

and the output voltages, vos and vod). The PI controller is

given in the z-domain as

GPI(z) = kp +
kiTs

2
· 1 + z−1

1− z−1
(17)

where kp and ki are the proportional and the integral gains,

respectively. All the system parameters are listed in Table I.

A. Conventional Phase-Shifted Current Control

Firstly, a firing angle of 32◦ (i.e., αf = 32◦) is chosen

according to Fig. 8 for the minimum THD, where the loading

is almost the same (i.e., īos ≈ īod). Moreover, v∗os and v∗od are

set as 650 V, which means that the enhanced scheme is not

enabled although Ps ≈ Pd. Fig. 9 presents the experimental

results for the multi-drive system shown in Fig. 2 with the

conventional phase-shifted current control. It can be observed

in Fig. 9(c) that the amplitudes of the currents drawn by both

rectifiers are not equal (i.e., Is 6= Id) due to the phase-shifted

current control. As a result, the total grid current THDiga
(i.e.,

16.3%) is slightly drifted away from the theoretical minimum

value that can be achieved by the phase-shifted current control.

This can be even worse when the firing angle is larger and

the unequal loading is severer. Nevertheless, with the phase-

shifted current control, the grid current quality is improved in

contrast to that (31%) shown in Fig. 4.

B. Enhanced Phase-Shifted Control Scheme

Following, the test adopts the enhanced scheme presented

in § II, where the dc-link voltages should be set according to

(15) and the loading condition (16). That is to say the loading

of the drives has been adjusted. For comparison, the firing

angle for the SCR remains the same (i.e., αf = 32◦), while the

dc-link voltage for the DR unit (i.e., v∗od) has been increased

to v∗od = 703 V in order to tolerate the unequal loading (i.e.,

the unequal rectified currents). The experimental results are

shown in Fig. 10.
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Fig. 9. Experimental results of the multi-drive system shown in Fig. 2 using
the phase-shifted current control (αf = 32◦): (a) grid current iga [10 A/div],
grid voltage vaN [200 V/div], DR input current ida [10 A/div], and SCR
input current isa [10 A/div], (b) Fast Fourier Transform (FFT) analysis of
the grid current iga [% of fundamental, 20%/div], and (c) SCR rectified
current is [5 A/div], DR rectified current id [5 A/div], SCR dc-link voltage
vos [20 V/div], and DR dc-link voltage vod [20 V/div].

Compared to the conventional phase-shifted current con-

trol, the proposed control scheme ensures that the rectified

currents from both rectifiers are almost at the same level (i.e.,

Is ≈ Id), as it is shown in Fig. 10(c). Hence, the THDiga
is

lowered to 16%, which is close to the theoretical minimum

(15.8%). Notably, due to the presence of a grid impedance,

it is not possible to achieve the theoretical minimum THD

by the phase-shifted control in practice. In addition, it is

also indicated in Fig. 10 that, when the enhanced scheme is

enabled (implemented), the SCR unit will operate at partial

loading condition in respect to the loading of the DR unit (i.e.,

Ps ≈ Pd cosαf), as what has been assumed. This demonstrates

the feasibility to implement the enhanced scheme practically

by partially operating certain drives. In all, the above tests are

in agreement with the discussions in § II.

In order to further demonstrate the effectiveness of the

proposal, more tests have been carried out on the same two-

drive system. In this case, the loading of the SCR unit is

around 80% of the DR unit when the dc-link voltages are the

Fig. 10. Experimental results of the multi-drive system shown in Fig. 2 using
the enhanced (load adaptive) phase-shifted current control (αf = 32◦): (a) grid
current iga [10 A/div], grid voltage vaN [200 V/div], DR input current ida

[10 A/div], and SCR input current isa [10 A/div], (b) Fast Fourier Transform
(FFT) analysis of the grid current iga [% of fundamental, 20%/div], and (c)
SCR rectified current is [5 A/div], DR rectified current id [5 A/div], SCR
dc-link voltage vos [20 V/div], and DR dc-link voltage vod [20 V/div].

same. This will lead to unequal input currents for the rectifiers,

and thus a poor current quality if the conventional phase-

shifted current control is adopted, as previously discussed.

Therefore, the enhanced phase-shifted current control scheme

is applied to both rectifier units, where the dc-link voltage

references are set according to (15) and the firing angle for the

SCR is 32◦ (i.e., αf = 32◦). In particular, the dc-link voltage

reference for the DR unit v∗od is reduced to 630 V, while the

dc-link voltage reference for the SCR unit remains the same

(i.e., v∗os = 650 V). The results are shown in Fig. 11.

As it is shown in Fig. 11(c), the enhanced phase-shifted

current control can ensure that the currents drawn by the

rectifiers are at the same level. Consequently, the grid current

quality is improved (i.e., THD = 16.1%) in contrast to the

results with the conventional phase-shifted current control.

It should be pointed out that the slight current difference

between the rectified currents is induced by the loading

variations during operation. All the above experimental tests

have demonstrated that the enhanced phase-shifted current
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Fig. 11. Experimental results of the multi-drive system shown in Fig. 2
using the enhanced (load adaptive) phase-shifted current control (αf = 32◦)
under different power levels: (a) grid current iga [10 A/div], grid voltage
vaN [200 V/div], DR input current ida [10 A/div], and SCR input current isa

[10 A/div], (b) Fast Fourier Transform (FFT) analysis of the grid current iga

[% of fundamental, 20%/div], and (c) SCR rectified current is [5 A/div], DR
rectified current id [5 A/div], SCR dc-link voltage vos [20 V/div], and DR
dc-link voltage vod [20 V/div].

control scheme in multi-drive systems can improve the quality

of the total currents. While it should be noted that the drive

systems may have to operate under different (partial) loading

conditions.

C. Case Study on a Four-Drive System

However, practically, it is difficult to operate the drives

at the desired power levels. Instead, it is more feasible to

consider more drives, where certain drives can be grouped

in order to achieve the power relationship in (16). Hereafter,

a four-drive system is considered, and Fig. 12 shows the

multi-drive system architecture. Compared to the two-drive

system shown in Fig. 1, there are two more SCR-fed drives

connected to the PCC as shown in Fig. 12, whose parameters

are the same as those given in Table I. The nominal power

for each drive has been designed at 7.5 kW with the line-to-

line voltage being 400 V. Simulations have been carried out in

MATLAB/Simulink, where the system has experienced a step-

change from a random operation condition to the enhanced

Fig. 12. Architecture of a four-drive system (#1 is a DR-fed drive and #2,
#3, and #4 are SCR-fed drives), where igp is the grid phase current at PCC
and ip represents the current drawn by the corresponding drive with ir being
its rectified current.

Fig. 13. Simulation results of the four-drive system shown in Fig. 12: grid
voltage vaN [200 V/div], grid current iga [40 A/div], drive input currents
(ia1, ia2 , ia3, and ia4) [10 A/div], dc-link voltages (vo1, vo2, vo3 , and vo4)
[10 V/div], and time [10 ms/div].

operation mode (certain drives are grouped). Fig. 13 presents

the simulation results.

In the random operation mode, the loading of 7.5 kW,

1.05 kW, 2.38 kW, and 4.34 kW has been recorded, where the

corresponding firing angles of 0◦, 17.19◦, 8.21◦, and 26.55◦

have been observed for the four-drive system (see Fig. 12).

As seen in Fig. 13, this random operation results in a THD

of 17.3% at the PCC. However, the drives can be grouped

according to (16) - #1 and #2 are in one group with the total

power being 8.55 kW (denoted as P1); #3 and #4 are in the

other group with the total power being 7.12 kW (denoted as

P2), forming an equivalent “two-drive” system. Thus, when

the firing angles are designed as 0◦, 0◦, 32◦, and 32◦, it gives
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P2 ≈ P1 cosαf with αf = 32◦. This meets the condition for

the enhanced phase-shifted current control. It is the grouping

of drives that leads to a lower THD (15%) of the grid current

at the PCC, as shown in Fig. 13, where it can be seen that

the multi-drive system can operate stably during the transient.

Nevertheless, the above case demonstrates the feasibility of

the enhanced scheme in practical multi-drive systems.

IV. CONCLUSION

In this paper, an enhanced phase-shifted control aiming

at harmonic cancellation has been introduced to three-phase

multi-drive systems, which have boost converters in the dc-

link. The enhancement is achieved by adjusting the drives

to operate in partial loading conditions, which in return can

ensure that the levels of the currents drawn by the front-

end rectifiers are almost equal. Experimental results have

confirmed that the enhanced phase-shifted current control can

maximize canceling out certain harmonics of interest in the

multiple ASD systems by introducing proper phase-shift to the

SCR units. That is to say, a minimum THD of the total grid

current is almost maintained constant among the parallel drives

operating at partial loading conditions. Notably, for practical

multi-drive systems consisting of more than two drive units,

the harmonic mitigation enabled by the phase-shifted current

control can be implemented, as most of the drives are not

operating at rated power levels, which has exemplified by

simulations. Furthermore, power quality oriented optimization

can be performed according to the loading condition.
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