Pressure-induced referred pain is expanded by persistent soreness

V. García Doménech,¹,² T. S. Palsson,³ P. Herrero,⁴ T. Graven-Nielsen¹,⁵

Abstract
Several chronic pain conditions are accompanied with enlarged referred pain areas. This study investigated a novel method for assessing referred pain. In 20 healthy subjects, pressure pain thresholds (PPTs) were recorded and pressure stimuli (120% PPT) were applied bilaterally for 5 and 60 seconds at the infraspinatus muscle to induce local and referred pain. Moreover, PPTs were measured bilaterally at the shoulder, neck, and leg before, during, and after hypertonic saline–induced referred pain in the dominant infraspinatus muscle. The pressure and saline-induced referred pain areas were assessed on drawings. Subsequently, delayed onset muscle soreness was induced using eccentric exercise of the dominant infraspinatus muscle. The day-1 assessments were repeated the following day (day 2). Suprathereshold pressure stimulations and saline injections into the infraspinatus muscle caused referred pain to the frontal aspect of the shoulder/arm in all subjects. The 60-second pressure stimulation caused larger referred pain areas compared with the 5-second stimulation (P < 0.01). Compared with pressure stimulation, the saline-induced referred pain areas were consistently induced and enlarged after 1 day of muscle soreness, indicating that the referred pain area may be a sensitive biomarker for sensitization of the pain system.

Keywords: Pressure pain threshold, Delayed onset muscular soreness, Referred pain, Infraspinatus, Shoulder pain, Muscle pain

1. Introduction
Chronic musculoskeletal pain affects a significant part of the population. The clinical presentation varies greatly between patients with respect to symptoms where variables such as pain intensity, distribution, and quality combined with the pain duration are commonly used for diagnostic purposes. One particular feature is referred pain, which is defined as pain located distant to the site of primary tissue insult. Referred pain from sore musculoskeletal structures is well known in various clinical conditions where the affected structures have a fairly distinct pattern of pain referral. Referred pain is likely driven by a central mechanism as it can be evoked in areas where sensory input has been removed, and it has also been shown that experimentally induced referred muscle pain can be reduced by ketamine, an N-methyl-D-aspartate antagonist. This is supported by findings from animal studies demonstrating that new receptive fields develop and an expansion in dorsal horn neuron activity occurs after a noxious stimulus from muscle. Such hyperexcitability may be involved in the referred muscle pain mechanism, potentially explaining the widespread pain and hyperalgesia commonly found in patients, suggesting that the efficacy of central processing is facilitated by ongoing or previous localized tissue insult. Thus, referred muscle pain may be a useful biomarker for assessing sensitivity of central pain mechanisms. In experimental settings, different types of stimuli have been used to assess pain referral. The most common types are chemical and mechanical stimulations. An intramuscular injection of hypertonic saline induces a deep sensation of pain, locally and distally, where a correlation is found between the localization, duration, and intensity of the nociceptive stimulus and the area of referred pain. Another characteristic is that the referred pain is delayed compared with the local pain. Furthermore, muscle pain caused by eccentric exercise (delayed onset of muscle soreness, DOMS) has been demonstrated to be a useful model in experimental settings for inducing deep-tissue pain hypersensitivity developing over 24 to 72 hours. Delayed onset of muscle soreness results in enlarged and increased number of pain areas after chemical and mechanical stimulations (eg, increased temporal summation of pain to repetitive painful pressure stimulations). Both phenomena have been linked with sensitization of central pain mechanisms. Thus, the DOMS model allows studying the efficacy of both chemical and mechanical models to assess local and referred or expanded pain in response to the persistent soreness.

In this study, a novel noninvasive model of referred muscle pain was developed to evaluate the similarities in referred muscle pain...
patterns evoked by chemical and mechanical stimulations before and after persistent pain. The hypotheses were that (1) a painful pressure stimulation induces areas of referred pain dependent on the stimulus duration, (2) pain referral patterns from saline and pressure-induced pain are similar, and (3) the referred pain areas are expanded after 1 day with muscle soreness. This model will be described in detail in the following section.

2. Materials and methods

2.1. Subjects

Twenty-one healthy volunteers (10 females) were recruited for this study, through an advertisement on social networks, public announcements, and from the university campus. Subjects had no current or previous history of persistent musculoskeletal pain specific to the neck, shoulder, arm, and/or in general. Pregnant women were not included in the study. All subjects were asked to refrain from intense physical exercises on the days of participation. The participants gave informed consent before participation after receiving a detailed description of the study protocol. The study was approved by the local Ethics Committee (VN 20130060) and was performed in accordance with the Helsinki Declaration.

2.2. Experimental protocol

This study was a cross-sectional, randomized study, which was performed in 2 sessions, separated by 24 hours (day 1 and day 2, respectively). In both sessions, pressure pain thresholds (PPTs) were recorded and suprathreshold pressure stimuli relative to the PPT were applied bilaterally at the infraspinatus muscle to induce local and referred pain at different time points. Moreover, PPTs were recorded bilaterally at baseline, during, and after experimental pain was induced in the infraspinatus muscle of the dominant side by injection of hypertonic saline. The postpain assessment was performed 5 minutes after the saline-induced pain had subsided. The local and referred pain areas were assessed at baseline (bilateral pressure stimulation), during pain (unilateral hypertonic saline), and in the postpain state (bilateral pressure stimulation). One of the aims of this study was to investigate the time-dependent aspects of suprathreshold pressure stimulation (STPS). Therefore, the pressure stimulation was given with 2 different durations, 5 and 60 seconds. The second session (day 2) was intended to investigate how and whether tissue hypersensitivity caused by DOMS would result in a facilitated pain referral from pressure and saline stimulations and because DOMS requires a minimum of 24 hours to appear, the day-2 session was performed approximately 24 hours after the day-1 session. The protocol for day-1 and day-2 sessions was identical apart from the eccentric shoulder exercises that were only performed on day 1. All assessments were performed with the subjects lying in prone position except when performing the exercise, which was performed in sitting.

2.3. Assessment of pressure pain sensitivity

A handheld pressure algometer (Somedic, Hörby, Sweden) with a 1-cm² probe covered by a disposable latex sheath was used to record the PPTs bilaterally at 4 locations in the shoulder region (Fig. 1). The assessment sites were identified using manual palpation using distinct anatomical landmarks: (1) The infraspinatus muscle site was defined as the equidistant point between...
between the medial point of the scapular spine, the inferior angle of the scapula, and the midpoint of the medial border of the scapula. (2) The supraspinatus site was found 1 cm above the midpoint of the spine of the scapula. (3) The lower trapezius site was found 4 cm lateral to the spinous process of the seventh thoracic vertebra. (4) The gastrocnemius site was located on the distal third on a line connecting the popliteal line with calcaneus. The sites were marked on the skin with a semipermanent marker allowing for easy identification in the second session. Pressure pain thresholds at the 8 sites were assessed in random order at baseline, during saline-induced pain, and after pain. Regional and distant sites were included in the PPT assessment to account for potential spread in sensitization (regional and widespread). The supraspinatus muscle was included as it has shared innervation with infraspinatus (through the suprascapular nerve) but does not have a primary function as an external rotator of the glenohumeral joint, particularly when the joint is in flexed position. Thus, because supraspinatus does not contribute to external rotation of the shoulder, any potential differences in sensitivity on day 2 might not be due to tissue effects produced by eccentric external rotations but rather a central mechanism causing hypersensitivity. The lower trapezius was selected for similar purposes as it shares neither innervation nor function with the infraspinatus muscle. The medial gastrocnemius was chosen as a distant site to control for any possible widespread changes in pain sensitivity.

The pressure was increased gradually at a rate of 30 kPa/s until the point where the pressure became painful on which the subject pressed a button and the stimulation was stopped. This was defined as the PPT and each site was assessed 3 times at baseline and twice in the “during” and “postpain” conditions. A minimum interval of 30 second was kept between assessing each site. The average value of the 2 or 3 PPT recordings was used for analysis.

2.4. Referred pain evoked by pressure stimulation

Pressure-induced referred pain was evoked by constant pressure stimulation with the pressure algometer (Somedic). In both sessions, PPTs were recorded at the infraspinatus muscle, and based on these values from each respective day, STPS was calculated as 120%, similar to a previous study using suprathreshold pain stimulations to evoke referred pain. This pressure intensity was selected for 2 reasons: first, it lies slightly above the pain threshold but can still induce referred pain in healthy volunteers (pilot study, data not shown), and second, the method can be used in future studies including clinical populations as it is noninvasive and causes minimal discomfort. The STPS-5s, STPS-60s and the PPT after saline-induced pain were assessed in random order (PPT or STPS, although STPS were always performed in the order of 5 and 60 seconds). This was performed to reduce the risk of the longer stimulation would sensitize the area. The effect of pressure stimulation was not tested during saline-induced pain as this would have imposed 2 competing painful stimuli, which would have made it difficult for the subjects to accurately report pain intensity and pain referral. The subject drew the pressure-induced pain area on a body chart immediately after the pressure stimulation.

2.5. Referred pain evoked by hypertonic saline

Sterile hypertonic saline (0.5 mL, 5.8%) was injected into the midportion of the muscle belly of the infraspinatus muscle site on the dominant side using a 1-ml plastic syringe and a disposable needle (27G). Only the dominant side was stimulated to reduce the invasiveness of the protocol as side differences were not expected to be seen. This enabled an investigation of additional effects of hypertonic saline on top of the bilateral DOMS by comparing the dominant and nondominant sides. The injection depth was measured using real-time ultrasound (VistaMetrix (v1.38) in arbitrary units (a.u.) after scanning the body charts. Furthermore, the body chart was subdivided into 15 different regions (Fig. 1): (1) the posterior head and neck area from the occipital process above to the cervicothoracic junction below; (2) supraspinous area, limited by the base of the neck in C7 and the spine of the scapula; (3) injection site area, overlying the infraspinatus muscle; (4) posterior shoulder, corresponding to the posterior deltoid muscle; (5) the back area, consisting of the ipsilateral part of the thoracic and lumbar spine below the infraspinatus area; (6) the posterior arm area, the area between the posterior deltoid and the line joining the lateral and the medial epicondyles at the elbow; (7) the posterior forearm area was limited proximally by the olecranon and distally by the line joining the radial and ulnar styloid processes; (8) the posterior hand area, comprising the dorsal aspect of the hand; (9) the anterior head and neck area, from anterior craniofacial region, including the anterior part of the neck down to the level of C7; (10) the supraclavicular area overlying the area from the clavicle to C7; (11) the chest area was marked by the sternum medially, the clavicle above, a vertical line from the axilla laterally, and the inferior part of the pectoralis major below.
(12) the anterior shoulder area corresponding to the anterior deltoid; (13) the anterior arm area was defined as the area between a horizontal line inferior to the anterior deltoid muscle and a line joining the lateral and the medial epicondyles at the cubital fossa; (14) the anterior forearm was limited proximally by the cubital fossa and distally by the line joining the radial and ulnar styloid processes; (15) the anterior hand area, comprising the volar side of the hand. The frequency of pain occurring in each region was used for data analysis. In line with Gibson et al., referred pain was defined as being pain isolated and distinct from the local pain caused by injection or pressure. An expansion of the area of pain beyond the local stimulation region may overlap with what is defined as referred pain, making it difficult to differentiate between the 2. Therefore, in this study, referred pain was defined as symptoms experienced outside the stimulation region in accordance with what has been performed previously.

2.7. Exercise-induced shoulder pain

At the end of the first session, the subjects performed an eccentric exercise for the external rotators of the glenohumeral joint in the dominant side to induce DOMS to be assessed at day 2. The exercise was performed in sitting position with the elbow of the dominant arm supported so the glenohumeral joint was in 70° to 80° of flexion in sagittal plane and the elbow in 90° of flexion as previous findings show maximal activation of the infraspinatus in this position. Subjects were asked to sit upright in a chair with support to the upper body. This position was chosen to minimize compression of subacromial structures. In this position, the participants performed repeated shoulder external rotations against the resistance of a firm elastic band which they held in their hand and was fixed to the wall on the other end. When fatigued and unable to actively perform concentric contraction of the external rotators, the subjects were instructed to use the contralateral arm to assist the concentric phase of external rotation and increase the load of the eccentric phase. In this way, although initially concentric contraction was performed, the maximal effort was performed in an eccentric way. Four sets of this exercise were completed with 1 minute of rest between sets. Failure in performing the exercise was defined as when the subject was (1) unable to perform the exercise, (2) unable to reach full range of motion, or (3) unable to maintain a stable upper body when performing the exercise. Similar procedure of exercise-induced fatigue has previously been used for inducing DOMS in external shoulder rotators muscles.

This method incorporated primarily the external rotators of the shoulders but not other muscles that are normally active during shoulder movement (eg, m. biceps brachii and m. triceps brachii). Although these muscles are active during the exercise, they only perform an isometric contraction as no movement occurs around the elbow joint. Therefore, DOMS was only expected to occur in external shoulder rotators muscles. Pain experienced outside the region of the rotator cuff muscles on day 2 could therefore be determined as being referred pain and not merely an expansion of local pain due to facilitated peripheral pain mechanisms. The following day, the degree of muscle soreness was evaluated using a modified 6-point Likert scale anchored with 0: a complete absence of soreness, 1: a light soreness in the muscle felt only when touched (minimal pain), 2: a moderate soreness felt only when touched (a slight persistent ache), 3: light muscle soreness when lifting objects or carrying objects (a fair amount of pain), 4: severe pain, stiffness, or weakness when moving the arm, 5: unable to perform any task or movement because of pain.

2.8. Statistics

Data are presented as mean and SEM, and for nonparametric data as median and interquartile range. The referred pain area and frequency of the body areas affected by referred pain did not pass the Kolmogorov–Smirnov test for normality and were therefore analyzed first with Friedman analysis of variance (ANOVA) with the Wilcoxon paired test used post hoc combined with a Bonferroni correction to account for multiple comparisons. The PPT and VAS data passed the Kolmogorov–Smirnov test for normality and were therefore analyzed with repeated-measures ANOVA and T test, respectively, performing 2 within-day analyses for day 1 and day 2 and another 2-way ANOVA to analyze between-days effects. Repeated factors were “session” (day 1 or day 2), time (baseline, during pain, and after pain), and “site” (4 sites for PPT assessments). Gender (male or female) was set as an independent factor. This analysis was performed for both the injection (dominant) side and the contralateral side. The Newman–Keul (NK) test was used for post hoc comparisons incorporating correction for multiple comparisons. To assess the likelihood of producing referred pain, frequencies of pain in each body region at baseline (day 1) and at day 2 were extracted, and the odds ratios and 95% confidence intervals were calculated. Finally, a correlation analysis was used to investigate a possible relationship between pressure pain sensitivity and pain referral. A statistical significance level of 5% was accepted.

3. Results

One male subject endured an elbow injury between the 2 sessions and was therefore excluded from further participation leaving data from 20 subjects being available for data analysis. The mean age was 26 years (range, 20-36 years), weight was 69 kg (range, 46-88 kg), and height was 173 cm (range, 165-195 cm). No differences were found when gender was set as a factor in any of the analyses presented below.

Soreness level provoked by eccentric exercise was registered for the participants in the study. The participants rated the level of DOMS when moving the shoulder using a 6-point Likert scale and reported a pain score of 2 (1-2, interquartile range) in the shoulder region of the dominant side. In the contralateral side, they reported a score of 0. One participant did not develop DOMS according to pain scores after the eccentric exercise, although PPT values were lower for that individual. The data were nevertheless included in the data analysis as they were considered to give a more conservative estimate on the measurements on day 2.

3.1. Saline-induced muscle pain model

The following results show the influence of saline-induced pain in both experimental sessions (day 1 vs day 2).

3.1.1. Visual analogue scale area, visual analogue scale peak, and duration of saline-induced pain

No difference was found between days when comparing the VAS area (27.7 ± 4.1 cm² in day 1 vs 24.4 ± 3.5 cm² in day 2) or VAS peak (6.0 ± 0.7 cm in day 1 vs 6.5 ± 0.7 cm in day 2) after the hypertonic saline injections. However, the duration of saline-induced pain was longer on day 1 compared with day 2 (410.1 ± 23.9 vs 354.3 ± 30.9 seconds; t test, P > 0.02).
3.1.2. Quality of pain

The pain caused by hypertonic saline on day 1 was described as “tart” (35% of participants) and “heavy” (40%), whereas when injected into the sore muscle (day 2), the most frequent words were “sharp” (45%) and “pressing” (40%).

3.1.3. Areas of referred pain

Saline-induced pain was felt in multiple areas at varying frequencies (Table 2) but mainly in the anterior and posterior shoulder, the supraspinal, and posterior arm areas (Fig. 2). For day 1 and day 2, most subjects perceived saline-induced pain locally and also referred to at least 1 upper limb region besides the infraspinatus area.

3.1.4. Size of the area of pain

The area of saline-induced pain was larger on day 2 compared with day 1 (Wilcoxon: *P < 0.01; Table 2).

3.1.5. Number of pain referral regions (of a maximal of 14)

No differences were found on day 2 compared with day 1. The frequency of referred saline-induced pain (expanded or referred to any area outside the infraspinatus area) was 75% on day 1 and 85% on day 2.

3.2. Suprathereshold pressure stimulation-induced pain model

The following results show the influence of pressure-induced pain in both experimental sessions (day 1 vs day 2).

3.2.1. Quality of pain

The pain caused by STPS was described both in day-1 and day-2 sessions as “pressing” (45% of participants), “annoying” (35%), and “drilling” (35%).

3.2.2. Areas of referred pain

The STPS-5s stimulation mainly caused pain referral to the anterior and posterior shoulder and supraspinal regions (Fig. 3 and Table 2), whereas the STPS-60s stimulation caused pain referral also to the anterior and posterior arm regions. In some cases, pain was also felt in the anterior and posterior forearm and hand regions.

3.2.3. Size of the area of pain

On day 1, in the saline-induced postpain condition, the area of pain was increased for the STPS-5s compared with baseline assessments (Wilcoxon: *P < 0.005; Table 3), whereas no differences were found for the STPS-60s. However, the STPS-60s pressure stimulation produced a larger area of pain than the STPS-5s stimulation at baseline and after pain (Wilcoxon: *P < 0.0001, Table 3). In contrast, on day 2, significant differences were only found for the baseline condition for both STPS-5s and STPS-60s (Wilcoxon: *P < 0.005) but not in the saline-induced postpain condition. When comparing day 1 and day 2, the STPS-5s produced a larger area of pain on day 2 than the same STPS-5s on day 1, at baseline (Wilcoxon: *P < 0.005), whereas no differences were found for the STPS-60s.

3.2.4. Number of pain referral regions affected (of a maximal of 14)

On day 1, in the saline-induced postpain condition, the number of pain referral regions affected was increased for the STPS-5s compared with baseline assessments (Wilcoxon: *P < 0.005; Table 3), whereas no changes occurred with the STPS-60s. However, the STPS-60s produced pain in more areas than the STPS-5s, only at baseline (Wilcoxon: *P < 0.0005, Table 3). On day 2, the number of affected regions did not change for the STPS-5s or the STPS-60s when baseline and postpain conditions were compared. However, the STPS-60s produced a larger number of affected regions than the STPS-5s at both baseline (Wilcoxon: *P < 0.0005) and saline-induced postpain condition (Wilcoxon: *P < 0.005).

When compared with the baseline condition on day 1, the odds ratio for experiencing pain in the anterior shoulder region on day 2 after 60-second baseline pressure stimulation was higher (odds ratio: 4.3; 95% CI, 1.6-16.3; Table 2).

3.3. Comparison of suprathereshold pressure stimulation and saline-induced referred pain models

The STPS-5s area was significantly lower at baseline and saline-induced postpain condition and affected fewer regions only at baseline when compared to saline-induced area at day-1 (Wilcoxon: *P < 0.005).

Table 1

<table>
<thead>
<tr>
<th>Area</th>
<th>Baseline</th>
<th>During pain</th>
<th>After pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ipsilateral</td>
<td>344 ± 24</td>
<td>340 ± 28</td>
<td>224 ± 21†</td>
</tr>
<tr>
<td>Contralateral</td>
<td>377 ± 26</td>
<td>406 ± 27</td>
<td>352 ± 21</td>
</tr>
<tr>
<td>Infraspinatus</td>
<td>407 ± 23</td>
<td>415 ± 31</td>
<td>331 ± 22†</td>
</tr>
<tr>
<td>Supraspinatus</td>
<td>373 ± 34</td>
<td>396 ± 30</td>
<td>344 ± 27†</td>
</tr>
<tr>
<td>Lower trapezius</td>
<td>384 ± 28</td>
<td>398 ± 24</td>
<td>363 ± 29</td>
</tr>
<tr>
<td>Gastrocnemius</td>
<td>364 ± 31</td>
<td>402 ± 25</td>
<td>359 ± 21</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Area</th>
<th>Baseline</th>
<th>During pain</th>
<th>After pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ipsilateral</td>
<td>344 ± 24</td>
<td>340 ± 28</td>
<td>224 ± 21†</td>
</tr>
<tr>
<td>Contralateral</td>
<td>377 ± 26</td>
<td>406 ± 27</td>
<td>352 ± 21</td>
</tr>
<tr>
<td>Infraspinatus</td>
<td>407 ± 23</td>
<td>415 ± 31</td>
<td>331 ± 22†</td>
</tr>
<tr>
<td>Supraspinatus</td>
<td>373 ± 34</td>
<td>396 ± 30</td>
<td>344 ± 27†</td>
</tr>
<tr>
<td>Lower trapezius</td>
<td>384 ± 28</td>
<td>398 ± 24</td>
<td>363 ± 29</td>
</tr>
<tr>
<td>Gastrocnemius</td>
<td>364 ± 31</td>
<td>402 ± 25</td>
<td>359 ± 21</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Area</th>
<th>Baseline</th>
<th>During pain</th>
<th>After pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ipsilateral</td>
<td>344 ± 24</td>
<td>340 ± 28</td>
<td>224 ± 21†</td>
</tr>
<tr>
<td>Contralateral</td>
<td>377 ± 26</td>
<td>406 ± 27</td>
<td>352 ± 21</td>
</tr>
<tr>
<td>Infraspinatus</td>
<td>407 ± 23</td>
<td>415 ± 31</td>
<td>331 ± 22†</td>
</tr>
<tr>
<td>Supraspinatus</td>
<td>373 ± 34</td>
<td>396 ± 30</td>
<td>344 ± 27†</td>
</tr>
<tr>
<td>Lower trapezius</td>
<td>384 ± 28</td>
<td>398 ± 24</td>
<td>363 ± 29</td>
</tr>
<tr>
<td>Gastrocnemius</td>
<td>364 ± 31</td>
<td>402 ± 25</td>
<td>359 ± 21</td>
</tr>
</tbody>
</table>

*Significantly different compared with between days (P < 0.05).
† Significantly different compared with baseline within the same day (P < 0.05).

PPT, pressure pain threshold.
Pain drawings illustrating the superimposed areas of saline-induced pain on day 1 and day 2. Note that (1) injections were always in the dominant side, but pain areas are mirrored when not located on the right side and (2) all individual areas of 20 subjects are included in the figure. See Table 2 for a specific description of the frequency of pain at each region.

4. Discussion
This study introduces a novel method for assessing pain referral from skeletal muscle, which is sensitive to expansion of referred pain areas due to prolonged muscle soreness. The pressure-induced referred pain provided referred pain characteristics comparable with the classical approach based on hypertonic saline injections. Moreover, the results indicated a time-dependent effect on pain referral patterns, which was further facilitated by prolonged muscle soreness. The findings demonstrate that suprathreshold pressure-induced referred pain may be a useful biomarker for investigating clinical pain states.

3.4. Pressure pain thresholds
A significant interaction was found between the factors time (baseline, during, and after saline) and sites (8 locations) on day 1 (RM-ANOVA: F(6,114) = 4.44, P < 0.001) and day 2 (RM-ANOVA: F(6,114) = 6.62, P < 0.001). The postsaline measurement showed reduced PPTs compared with baseline and during saline-induced pain at the ipsilateral m. infraspinatus (NK: P < 0.0001 on day 1 and NK: P < 0.005 on day 2), m. supraspinatus (NK: P < 0.001 on day 1 and NK: P < 0.005 on day 2), and lower trapezius muscle (NK: P < 0.05 on day 1) assessment sites (Table 1).

Independent of the assessment time (baseline, during, and after saline), PPTs were significantly reduced on day 2 compared with day 1, at ipsilateral m. infraspinatus (NK: P < 0.0005), m. supraspinatus (NK: P < 0.0005), and lower trapezius (NK: P < 0.005) muscle (RM-ANOVA: F(3,57) = 5.49, P < 0.01). For the contralateral side, no significant changes between day 1 and day 2 were found at any assessment site.

3.5. Correlation between pain, pain sensitivity, and pain referral
On both days, in the postpain condition, a correlation was found between the VAS peak and the pain area (Spearman = 0.52, P < 0.05) and between the VAS peak and the number of pain-affected regions (Spearman = 0.48, P < 0.05). On day 2, a correlation was found between the saline-induced VAS area and the size of the STPS-60s area of pain at baseline (Spearman = 0.59, P < 0.05). No correlation was found between pressure pain sensitivity (PPT) and pain referral.

Table 1

<table>
<thead>
<tr>
<th>Pain region</th>
<th>Baseline pressure stimulation</th>
<th>Hypertonic saline</th>
<th>Postpain pressure stimulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 seconds Day 1</td>
<td>Day 2</td>
<td>60 seconds Day 1</td>
</tr>
<tr>
<td>Posterior head/neck</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Supraspinal area</td>
<td>10</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>Infraspinatus area</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Posterior back</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Posterior shoulder</td>
<td>5</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Posterior arm</td>
<td>0</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Posterior forearm</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Posterior hand</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Anterior head/neck</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Supraclavicular area</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Chest area</td>
<td>10</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Anterior shoulder</td>
<td>15</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Anterior arm</td>
<td>0</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Anterior forearm</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Anterior hand</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Significant odds ratio (odds ratio, 4.3; 95% CI, 1.6-16.3) with respect to the same stimulation on day 1.

Bold: pain areas with the higher pain frequencies.

AQ12: Footnotes are correct
findings are in line with referral patterns from myofascial trigger points located in the infraspinatus muscle, which give similar pain referrals to the shoulder and arm on the stimulated side.52 Furthermore, stimulating different elements of the muscle–tendon–bone unit results in varying pain referral,11 but the current findings show that stimulating the same structure in different pain states does the same.

These results demonstrate that referred pain from a somatic structure is a time-dependent process originating from an intense local stimulus, which is in line with previous findings.11,14 This may relate to the time it takes for nociceptive input to converge actively onto neighboring levels of dorsal horn neurons and an activation of brainstem and supraspinal mechanisms.14 The sensitivity of these central pain mechanisms seems to play a role in the size of the painful area, but it is less clear whether a sensitized system demonstrates a shorter delay between the onset of a nociceptive stimulus and the onset of pain referral.10

Saline-induced muscle pain generally induces a delay between onset of pain referral distal to the stimulated site and local pain14 with a comparable number of affected areas seen after pressure-induced pain referral.11 This is in accordance with the current findings where no difference was found between the numbers of affected areas from chemical stimulation and 60-second pressure-induced pain. Additionally, it is interesting to consider that STPS-5s and STPS-60s show no difference in the size of the area of pain that they produce where the muscle is expected to be in its most sensitized state, which is the postsaline-induced pain condition on day 2. These findings indicate that with sensitized peripheral or central mechanisms, the responses to the different stimuli start to resemble each other.

\section*{4.2. Expanded referred pain areas due to persistent soreness}

The protocol used eccentric training involving primarily the external rotators of the shoulder against resistance that has been shown to cause a local inflammatory response and a systemic upregulation of inflammatory biomarkers.25 Pain caused by such a pain model is usually transient, lasting only a few days, but it is worth considering that long-lasting peripheral input from nociceptive fibers to the dorsal horn can produce short-term and long-term neuroplastic changes at this site of the central nervous system.20 This may involve facilitated synaptic transmission between dorsal horn neurons and descending facilitation of the afferent signals along with impaired central pain inhibition.51 Thus, tissue injuries may affect the central nervous system in a way that it becomes more susceptible to a new nociceptive stimulus to the region.

These results indicate pain hypersensitivity at the infraspinatus, supraspinatus, and lower trapezius regions in the DOMS condition, suggesting that the exercise only affected the structures related to the shoulder. However, it is interesting to consider that supraspinatus and lower trapezius muscles are not synergists of the infraspinatus in glenohumeral external rotation when the shoulder is in flexion, indicating that the increase in pain sensitivity of these regions on day 2 may not be explained with tissue affection but rather with an increased contribution of central mechanisms. The applied protocol for exercise-induced soreness predominate induces localized sensitization, but a previous study found that it can also result in a facilitated nociceptive withdrawal reflex,23 which is considered indicative of hyperexcitability of the spinal nociceptive system.3 Likewise, temporal summation to pressure stimulations is known to be facilitated in DOMS-induced pain.51,11 Such facilitated central mechanisms are also potentially an underlying cause for the expanded referred pain areas to the same pressure stimulus on day 2 compared with day 1. Interestingly, the expanded referred pain areas were demonstrated when adjusting the stimulus intensity to the PPT of the day (ie, the absolute stimulation intensity was reduced on day 2). Thus, it is assumed that the same relative nociceptive stimulus is provided on the 2 days, but yet the referred pain area was expanded. As this study wanted to assess the method of pressure-induced referred pain and comparing it with the saline-induced referred pain, the minimal amount of pressure stimulation was used to reduce the complexity and increase tolerability of the method. As a powerful peripherally driven nociceptive stimulus can lead to a greater involvement of spinal18 and supraspinal54 structures, the enhanced pain

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{pain_drawing.png}
\caption{Pain drawings illustrating the superimposed areas of pain produced by 5-seconds and 60-seconds pressure stimulations to the infraspinatus muscle with referred pain to the shoulder, arm, and forearm areas and performed on day 1 and day 2. Each day shows baseline and postsaline pressure–induced pain areas.}
\end{figure}
referral pattern on day 2 can be explained by the central nervous system being sensitized as a result of the prolonged muscle soreness.

4.3. Clinical implications

Assessment of pain sensitivity is considered relevant especially when differentiating between widespread and regional pain hypersensitivity.

Somatic structures are capable of causing an extensive pain referral pattern in different patient groups, which are commonly known to have increased pain sensitivity in pain-free areas, indicating involvement of facilitated central mechanisms. The odds for experiencing pressure-induced pain in the anterior shoulder region on day 2 was increased, which is interesting for 2 reasons: first, this mimics what is found in a clinical population when investigating pain referral patterns from infraspinatus and second, this finding demonstrates the feasibility of using suprathreshold stimulation as a surrogate model for investigating pain referral patterns in soft tissue.

As suprathreshold pressure intensities cause a pain referral pattern comparable to what hypertonic saline does, the utility of it for diagnostic purposes in clinical practice is obvious. However, this study used an experimental pain model to investigate pain referral expansion in healthy subjects and therefore warrants a similar investigation in a clinical population. As discussed above, patterns of pain referral may be a relevant marker for the sensitivity of central pain mechanisms but to enable the clinicians to monitor the irritability and progression of a given musculoskeletal pain condition more effectively, a more thorough assessment of the temporal and spatial characteristics of the pressure-induced pain referral pattern would be valuable.

5. Conclusion

This study introduced a novel method to assess referred pain patterns, which is sensitive to expansion of referred pain areas due to prolonged muscle soreness. The results showed similarity between chemically and mechanically induced referred pain patterns that were dependent on the stimulus duration. Assessment of the pain referral pattern includes valuable information regarding involvement of sensitized central pain mechanisms. Further studies including clinical groups are warranted to further understand the usefulness of the methodology in clinical practice.

Conflict of interest statement

The authors have no conflicts of interest to declare.

Center for Neuroplasticy and Pain (CNAP) is supported by the Danish National Research Foundation (DNRF121).

Article history:

Received in revised form 27 December 2015
Accepted 12 January 2016
Available online XXX

References

