Full Duplex Emulation via Spatial Separation of Half Duplex Nodes in a Planar Cellular Network

Henning Thomsen, Dong Min Kim, Petar Popovski, Nuno K. Pratas, Elisabeth de Carvalho
Department of Electronic Systems, Aalborg University, Denmark
{hi, dmk, petarp, nup, edc}@es.aau.dk

Introduction

- Full Duplex is seen as a way of enhancing rate performance in a cellular network
- Complex processing at FD transceiver
- Other approaches:
 - Having physical channels overlap[1]
 - Having UL and DL timeslots overlap[2]

System Model and Assumptions

- Wireless channels Rayleigh faded
 - Pathloss model \(f(r) = r^{-\alpha} \)
 - Constant BS and MS transmission power \(P_B \) and \(P_M \).
- Location of FD-BSs modeled as a PPP \(\Phi_F \) with density \(\lambda_F \).
- Location of CoMPflex BSs modeled as a PPP \(\Phi_C \) with density \(\lambda_C \).
- Approximate CoMPflex UL and DL BSs as thinned PPs.
 - UL: \(\Phi_{C,UL} \) has density \(\lambda_{C,UL} = 0.5 \lambda_c \)
 - DL: \(\Phi_{C,DL} \) has density \(\lambda_{C,DL} = 0.5 \lambda_c \)
 - \(\lambda_C = \lambda_{C,UL} + \lambda_{C,DL} \)

Poisson Point Process

- Theoretical tool for performance analysis of cellular networks
- Deploy points randomly and independently in two dimensions
- Average number of points in a window is the density \(\lambda \) of the process.
- Can derive CDF \(F_R(r) \) of \(R \), the distance from a typical point to the nearest (other) point: \(F_R(r) = 1 - \exp(-\lambda \pi r^2) \)
- Choosing each point in PPP randomly and independently with probability \(p \) results in a thinned PPP \(\Phi_{thin} \) with density \(p \lambda \).

Full Duplex Emulation

- Main idea: Emulate FD by spatial separation of HD devices
- Avoids complexity of FD transceivers
- One UL- and one DL-BS are cooperating
- CoMPflex: CoMP for In-Band Wireless Full Duplex

BS Pairing

- Each UL BS is connected to an adjacent DL BS, where neighbor is chosen at random.
- Unpaired BSs are assigned UL and DL at random
- One MS scheduled in each cell
- MS positions approximated by PPs, independent from BS PPP.
- Dependency in UL-DL pairing complicates direct derivation

Signal Model

- UL SINR at BS:
 \(\gamma_B(r) = \frac{g_B(r) \lambda C,UL}{P_M} \cdot \frac{f_B(r) \lambda C,DL}{P_M} + \sigma^2 \)
- DL SINR at MS:
 \(\gamma_f = \frac{g_f(r) \lambda C,UL}{P_B} \cdot \frac{f_f(r) \lambda C,DL}{P_B} + \sigma^2 \)

Success Probability in UL

\(P_U = 2 \pi \lambda_C \int_0^r r \cdot \exp(-\pi \lambda \pi r^2 - \sigma^2) \text{CDF}(r) \text{CDF}(r) \text{dr} \)

Success Probability in DL

\(P_D = 2 \pi \lambda_C \int_0^r r \cdot \exp(-\pi \lambda \pi r^2 - \sigma^2) \text{CDF}(r) \text{CDF}(r) \text{dr} \)

Distance CDF analysis

Conclusion and Future Work

- CoMPflex brings benefits over FD, via usage of HD BSs
- Gives improved performance for HD MSs in UL and DL
- By spatially separating HD BSs, we can emulate FD operation
- Ongoing study into comparing with CoMP, and clustering more BSs

This work was supported by Innovation Fund Denmark, via the Virtuoso project