Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Energy-Aware Scheduling of FIR Filter Structures using a Timed Automata Model

Wognsen, Erik Ramsgaard; Hansen, Rene Rydhof; Larsen, Kim Guldstrand; Koch, Peter

Published in:
2016 IEEE 19th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)

DOl (link to publication from Publisher):
10.1109/DDECS.2016.7482468

Publication date:
2016

Link to publication from Aalborg University

Citation for published version (APA):

Wognsen, E. R., Hansen, R. R., Larsen, K. G., & Koch, P. (2016). Energy-Aware Scheduling of FIR Filter
Structures using a Timed Automata Model. In 2016 IEEE 19th International Symposium on Design and
Diagnostics of Electronic Circuits & Systems (DDECS) (pp. 163-168). IEEE.
https://doi.org/10.1109/DDECS.2016.7482468

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 11, 2024

https://doi.org/10.1109/DDECS.2016.7482468
https://vbn.aau.dk/en/publications/356f5489-14c9-416f-9cd6-647aa06b13df
https://doi.org/10.1109/DDECS.2016.7482468

Energy-Aware Scheduling of FIR Filter Structures
using a Timed Automata Model

Erik Ramsgaard Wognsen, René Rydhof Hansen, Kim Guldstrand Larsen, and Peter Koch
Aalborg University, Denmark

{erw, rrh,kgl}@cs.aau.dk

Abstract—Software Defined Radio (SDR) devices are becom-
ing increasingly popular due to their support for mode-, standard-
and application-flexibility. At the same time however, the energy
consumption of such devices typically suffers from the use of
reconfigurable real-time platforms which are known to be severely
power hungry. In this work we therefore show how to use tools
and techniques developed by the formal methods community to
minimize the energy consumption of Finite Impulse Response
(FIR) filters which are extensively used in SDR front-ends. We
conduct experiments with four different FIR filter structures
where we initially derive data flow graphs and precedence graphs
using the Synchronous Data Flow (SDF) notation. Based on actual
measurements on the Altera Cyclone IV FPGA, we derive power
and timing estimates for addition and multiplication, including
idling power consumption. We next model the FIR structures
in UPPAAL CORA and employ model checking to find energy-
optimal solutions in linearly priced timed automata. In conclusion
we state that there are significant energy-versus-time differences
between the four structures when we experiment with varying
numbers of adders and multipliers. Similarly, we find that idle
power becomes an important parameter when a high number of
functional units are allocated.

I. INTRODUCTION

With the easy availability of cheap SDR devices, e.g.,
the RTL-SDR! it seems certain that the near future will see
a proliferation of systems incorporating SDR at all levels.
Especially, this is emphasised by the potential of the rapidly
expanding “Internet of Things” technology where embedded
systems and appliances, often low-power and low-cost, are
connected through the Internet. Further afield, SDR applica-
tions have also found their way into energy critical autonomous
systems such as (nano-)satellites, e.g., the Aalborg University
student satellite AAUSAT32 Common to most of such SDR
applications is that they are built on low-energy platforms
with a limited (re-)supply of energy, e.g., in the form of
batteries or solar panels. Consequently, when designing and
implementing SDR applications, it is important to take energy-
consumption into account and to reduce the application’s
energy consumption where ever possible.

We employ a formal method, which originally is developed
to find optimal solutions in large search spaces, to model,
explore, and optimize the energy consumption of SDR front-
ends. Specifically, we investigate four implementation struc-
tures for digital FIR filters which are often used in SDR front-
ends, [1]. Over the years much work has been done in the

This work was funded by the EU FP7 project SENSATION, grant num-
ber 318490.

Uhttp://www.rtl-sdr.com
Zhttp://www.space.aau.dk/aausat3/

978-1-5090-2466-7/16/$31.00 ©2016 IEEE 163

pkles.aau.dk

context of energy reduction in real-time digital filter systems,
e.g., [2] and [3]. These contributions however, rely on methods
related to either 1) the circuit architecture, 2) the type of arith-
metic employed, or 3) the specific program structure used for
implementing the filter algorithm. Therefore, to our knowledge
no previous paper has addressed the use of linearly priced
timed automata to conduct energy-aware scheduling of real-
time digital signal processing algorithms onto reconfigurable
hardware (HW).

We discuss how the SDF notation, [4], can be used to derive
precedence graphs (PG) which allows us to formally model
these structures as linearly priced timed automata using the
UPPAAL CORA tool suite [5]. The timed automata model
can next be model checked and energy-optimal solutions can
be found based on power and time estimates (for addition
and multiplication) that we derive from actual measurement on
the Altera Cyclone IV FPGA. Based on the model checking
results we conclude that significant differences in energy and
execution time can be observed for the different FIR structures.
The paper, which is based on [6] and [7], is organized with an
introduction to the FIR structures in Section II, a discussion
on the experimental set-up in Section III, an analysis of the
results in Section IV, and finally the conclusion in Section V.

II. FIR FILTER STRUCTURES

In the time domain an FIR filter is described by its
difference equation y[n] = Zl]io b, - x[n — 1] where N is
the filter order and x[n —] represents a sequence of input
tokens. The constants b; are known as the filter coefficients
(equivalent to the impulse response) which completely specify
the behavior in terms of amplitude- and phase responses of the
filter, see e.g., [8]. Various structures expressed as SDF graphs
can implement the difference equation. First and foremost, the
direct implementation which is known as the transversal filter,
Figure 1 for N = 5. Figure 1 (a) illustrates a typical data
flow graph for the filter which in (b) is redrawn using the
SDF notation. Here, the arithmetic operations are identical
to those shown in (a), but the delay elements (z~! nodes)
are substituted with direct arcs denoted D (no arithmetic
operation). Further, the distribution of a token corresponds to
an operation which is indicated as a fork (F') node.

Input to and output from every node is marked with a
number specifying the amount of tokens being consumed and
produced, respectively, each time the node is executed. This
is also shown in Figure 1 (b) along with the fact that each
node (red) and each arc (green) must be given a unique
number (in any random order). Note that the input arc from the
ADC and the output arc to the DAC are both omitted under

13
14

()

Fig. 1. The direct implementation of Equation ?? is shown here as a data flow
graph (a), a synchronous data flow graph (b), and as a precedence graph (c).

the realistic assumption that data from the external world is
always available and data to the external world can always be
delivered. Similarly for the coefficients b;.

It is possible to 1) decide if the FIR filter is executable, i.e.,
the amount of tokens on the arcs remains bounded and non-
negative, and 2) to identify a possible execution order among
the individual nodes. The latter is needed in order to transform
the SDF graph into a PG, which then holds information on
1) the inter-precedence relations among the nodes, and 2) the
amount of inherent parallelism, see Figure 1 (c).

For non-recursive algorithms such as FIR filters, the prece-
dence relations are given directly from the SDF graph which
is also obvious from Figure 1 (the fork nodes do not need to
be considered). Note however, that the PG, e.g., Figure 1 (c)
explicitly expresses the precedence relations without timing
information which can next be derived by scheduling the graph
according to a certain HW allocation.

A. Alternative FIR Structures

Theoretically, there exists infinitely many structures for a
given difference equation. Designers normally use the transver-
sal filter which fits conveniently into the architecture and
instruction set of most digital signal processors (DSPs). In
the context of reconfigurable HW architectures, the computing
paradigm is different since it supports exploitation of paral-
lelism, thus making it essential to discuss other structures with
a potentially higher degree of parallelism.

1) Transversal Filter with Adder Tree: The transversal
filter is characterized by a long adder chain which prohibits
a noticeable speed-up, even in the context of an increased
number of HW units. One option is to replace the adder
chain by an adder tree, Figure 2 (N = 5). In this figure (and
onwards) we show only the original data flow graph together
with the PG. Comparing Figure 2 (b) to Figure 1 (c) we clearly
see that the critical path has been reduced by introducing

164

Fig. 2.
adder tree. The data flow graph and PG are shown in (a) and (b), respectively.

The accumulation of the product terms is conducted in terms of an

x[n]

by ’é bz’é? “3*%3 by b5*é
+<¥>++é*é:§+

(a)

(b)
Fig. 3. Using retiming, all delay elements can be shifted into the adder chain.
The data flow graph and PG are shown in (a) and (b), respectively.

more parallelism, thus enhancing the solution space in terms
of scheduling and assignment possibilities for a given HW
allocation. The overall input-output relation is maintained for
floating point computation but for fixed point scenarios there
might be numerical deviations leading to different signal-to-
noise ratios (SNR).

2) Transposed Form: The two structures are characterized
by a delay-line at the input, i.e., the input sample x[n] is
delayed before it is fed to the multipliers, and thus all mul-
tiplications are computationally independent and can execute
in parallel. At the same time however, there is more or less
dependency among the additions as already illustrated, which
leads to an adder dominated critical path. Using the theories for
retiming, [9], it is possible to reorganizing the delay elements
such that they are all shifted to the output, also know as the
Transposed FIR filter, Figure 3.

The salient feature of the transposed form is that the delay
elements now serve to decouple the adder operations and since
the multipliers all receive the same input data (z[n]), the
multiplications can still execute independently. The transposed
form therefore is characterized by a series of data independent
multiply-accumulate operations as shown in Figure 3 (b),
enabling a larger solution space for allocation, scheduling and
assignment combinations.

3) Symmetric Impulse Response: FIR filters can be de-
signed to have exact linear phase response which in many
cases (SDR front-ends included) is a most wanted property.
The designer must determine if the filter should have this
characteristic, and then include the linear phase requirement
into the specification. The resulting filter has symmetry in the
filter coefficients, i.e., by_; = b; fori = 0..(N—1)/2, N odd.
The symmetry can be utilized efficiently in order to reduce
the number of multiplications by a factor of two as shown in
Figure 4. Concerning the numerical properties in a fixed point

%[n]

yinl b)

Fig. 4. A linear phase response can be utilized to reduce the number of
arithmetic operations. The data flow graph and PG are shown in (a) and (b).

implementation, the symmetric structure is likely to exhibit
a different SNR as compared to the transversal filter since
addition is conducted prior to multiplication.

III. THE EXPERIMENTAL SET-UP

With the purpose of studying energy conditions for FIR
filters implemented on an FPGA platform, we next investigate
fundamental power- and timing metrics. For an FPGA, the total
power consumption originates from many different sources,
e.g., I/O, clock distribution, analog functions (e.g., PLLs),
and from the logic conducting the computation. Since we
are interested only in the actual computation, we first study
the core logic power consumption. Our set-up consists of an
Altera/terasIC DE2-115 development platform equipped with
the Cyclone IV EP4CE115F29C7N FPGA, [10]. This platform
is supplied from an external 12V DC source which feeds
several on-board voltage regulators. Doing power measurement
directly from this source would be meaningless. The arithmetic
computations are conducted in the logic elements which belong
to the core of the total FPGA fabric. The core logic is supplied
from a 1.2V DC source which on the board is derived directly
from a 1.2V voltage regulator. Since power is also participated
in this regulator we cannot just measure the current flowing
into this regulator. One may consider to conduct a current
measure on the output of the regulator using a highly accurate
stand-alone Amp-meter.

We have however, opted for an alternative strategy where
we modify the board circuitry in order to get direct access
to the core logic supply pins on the FPGA. Figure 5 shows
a block diagram of the power supply scheme used in our
set-up. The core logic is supplied 1.2V DC from an Agilent
Technology N6705B DC Power Analyzer [11], which at the
same time is able to conduct current measurements with a
0.025% + 8nA accuracy. We have chosen a second FPGA to
provide the input stimuli to the device under test.

With this set-up we can measure the energy consumed by
the individual arithmetic units in the filter. However, a variety
of parameters are subject for variation, e.g., different circuit
topologies, the input data values and rate (input stimuli pattern
and frequency), and the number representation used. We expect
that different adders and multipliers will exhibit varying energy
consumption and thus we first investigate power- and time
consumption of different adder and multiplier topologies. All

168

PC w. Quartus Il
DE2-115 Development Board

usB

Cyclone IV EP4CE115F29CTN

IO Circuit

A

e

FPGA-Based

12V PSU Pattern Generator

NB67058
DC Power Analyzer
1.2V

Core Logic

lcore

Fig. 5. Measuring computational-dependent power overheads on the Cy-
clone IV FPGA is possible due to a modified Altera DE2-115 development
board where the current flowing into the FPGA core logic is supplied directly
from an Agilent N6705B DC Power Analyzer.

TABLE 1. AVERAGE POWER CONSUMPTION AND EXECUTION TIMES
FOR THE ALTERA CYCLONE IV MULTIPLIER AND ADDER CIRCUITS.

Functional Unit Active Power, Propagation Time, Idle Power,
Measurement [6] Simulation [6] Estimation
[Embedded Multiplier | 338 uW [10.32 ns [169 uW |
| Embedded Adder | 324 uW | 6.75 ns [162 uW]

circuits are coded in VHDL, 12 bit 2’s complement. The adder
types explored are 1) ripple-carry adder, 2) carry look-ahead
adder, 3) carry-select adder, and 4) the FPGA pre-defined em-
bedded adder. Similarly, the multiplier types investigated are
1) combinational multiplier, 2) shift-and-add multiplier, and 3)
the FPGA pre-defined embedded multiplier. Our experimental
campaign is discussed in [6] where we conclude that both
the embedded adder and the embedded multiplier cannot be
outperformed in terms of energy consumption, thus being those
used here. The average (active) power and the propagation
time for these two functional units are shown in Table I. These
figures represent the power contribution which originates from
the dynamic behavior of the total CMOS power consumption
Ptotal = den + Pstat - (Pswitch + Pshort) +]Dleak’

Since it is impossible to conduct an actual measurement
of the leakage current associated with the individual adder
and multiplier, the challenge therefore is to provide a realistic
ratio between the dynamic and the static power consumption.
According to trend reports published by International Technol-
ogy Roadmap for Semiconductors (ITRS), [12], we estimate
realistically that the “Logic Static Power” is equivalent to (or
even higher than) the “"Logic Dynamic Power”. We therefore
model Pyyy, ~ Pgtqr Which means that the active power figures
shown in Table I represent a twice as high power consumption
as compared to the circuits’ idle power, also shown in Table 1.

Using these figures we next conduct Time-and-Energy
driven Design Space Exploration (DSE) for the FIR structures.
We explore how different HW allocations will impact the
execution time and the energy consumption within one sample
period. Basically, this is done by scheduling the structures
under given HW allocations. We employ model checking in
terms of UPPAAL CORA [13], [14], designed to perform cost-
optimal reachability in linearly priced timed automata. A timed
automata describes a state space, and model checking is the
discipline of exhaustively searching such a space to determine
with certainty if a given final state is reachable from the initial

start[provides[rid]]?
plrid] = active_power[provides[rid]]

Init Idle

©

plrid] = idle_power[provides[rid]]

Active

stop[provides[rid]]?
plrid] = idle_power[provides[rid]]

Fig. 6. UPPAAL timed automaton modeling a physical functional unit.

X <= delay[requires[tid]]
Init Running Done
ready(tid) @ X == delay[requires[tid]] O

start[requires[tid]]! stop[requires[tid]]!
x=0 donel[tid] = true

Fig. 7. UPPAAL timed automaton modeling an arithmetic operation.

state. By extending timed automata with prices (cost rates), the
problem can be extended to cost-optimal reachability.

Our model consists of two different types of timed au-
tomata — one denoted “resource” representing the functional
units, and another denoted ’task” which models the arithmetic
operations. The resource- and task-automata are shown in
Figure 6 and Figure 7, respectively. The actual price marks
applied in the resource automata are the active_power and
idle_power as listed in Table I. Similarly, the timing for the
task automata is the propagation time (delays) which are also
indicated in Table I. All individual resources and tasks are
identified by a unique id-number (rid and tid, respectively).
The total system is composed of a network topology of all
automata, thus representing the FIR algorithm as well as the
given HW allocation.

The cost associated with executing a given filter structure
is defined as 1) the sum of the power, and 2) the sum of the
time being consumed by the functional units until all tasks are
complete. Therefore, in order to conduct the model checking
and find a cost-optimal schedule, we ask the question; ’does a
state exists for the system where all tasks are completed, and
if yes, then calculate the energy optimal trace which brings
the system into that particular state”. Thus, we ask UPPAAL
CORA to find the ”Best Trace” for the query;

E <> forall (tid : tid,) Task(tid).Done (1)

IV. RESULTS

Since an FIR filter executes in an infinite loop, it makes
sense to evaluate just one such iteration. We are interested in
the shortest possible iteration period, and at the same time
aiming for the smallest possible energy consumption. Since
the power metrics are fixed (inclusive idling), the only tunable
parameter is the HW allocation. Our experiments ignore archi-
tectural components such as memories, registers, busses, and
control entities. One may argue that by including only arith-
metic units our model will be too simple to capture the overall
working of the register transfer level (RTL) architecture. We
do hide some power consumption information originating from
signal communication and datapath control, but in order to
verify our idea, we have decided, as a first approximation, to
rely only on the adder/multiplier contributions.

166

x10° Execution Time versus Number of Multipliers
8
T

Execution Time [s]

zor
=

er of Mulipliers

xig" Energy Consumption versus Number of Multpliers

Energy Consumption [J]

0 i i i i i i
i

Nurnber of Multipliers

S " Energy versus Time
T T

Energy Consumption [J]

Execution Time [s] x10°

Fig. 8. Results of the energy optimal scheduling of the transversal FIR filter.
Here, as well as in the Figures 9, 10, and 11, the top figure shows the total
execution time as a function of multipliers allocated, the middle figure shows
the energy consumption and the bottom figure presents the Pareto curve for
various combinations of multipliers/adders allocation.

A. The transversal FIR filter

Due to its sequential adder chain, the transversal filter is not
able to benefit from a HW allocation beyond one adder. The
high degree of parallelism associated with the multiplications
however, makes it interesting to experiment with a variable
number of multipliers ranging from 1 to 6.

Figure 8 illustrates the time- and energy-consumption as
well as the Pareto curve for 6 different HW combinations.
The execution time decreases for an increased number of
multipliers but only up to 3 multipliers after which no further
speed-up is possible, the reason being that the adder chain
becomes the bottleneck. Concerning the energy consumption
we see a monotonic increasing curve which becomes essen-
tially linear from 3 multipliers and onwards. Although we
do not see any improvement in the execution time beyond
3 multipliers, the energy continues to increase which is due
to the idle cost associated with the inactive multipliers. The
Pareto curve discloses that 2-3 multipliers provide the best
time-energy trade-off.

B. Transversal filter with adder tree

The transversal filter with an adder tree enhances the
overall amount of parallelism. The parallelism associated with
the multiplications remains unchanged but now potentially 3
additions can be conducted simultaneously. However, allocat-
ing 3 adders is inferior to the solution with only 2 adders
because the critical path is still associated with the adder tree.
Therefore, we have chosen to experiment with 1-2 adders and
1-6 multipliers, see Figure 9.

We see a monotonic decrease in the execution time (for
1 and 2 adders) when the number of multipliers is increased.

x10 Execution Time versus Number of Multpliers
T

8 p T

—e—1 adder
——2 adders

i
3 1
Nurnber of Multipliers

xao" Energy Consurmption versus Nurnber of Muttipliers
T T

! —e—1 adder
/ —*—2adders
%.klx g

0 i i i i i i

1
Nurnber of Multipliers

S x " Energy versus Time
T T

—e— 1 adder
——2 adders

Fig. 9. Scheduling results for the transposed filter with adder tree structure.

Interestingly, an even larger execution time deviation between
the 1-adder and the 2-adder solution is observed as more
multipliers are allocated. Explaining this behavior, we compare
the observation against the energy consumption results. Here
we also see monotonic increasing curves, the exception being
the allocation with 1 multiplier only. In this particular case
we will have 1-2 adders idling while waiting for yet another
product to be computed, and due to the idle power consumption
this “waiting time” actually turns out to be “energy-wise” more
costly as compared to other scenarios with more multipliers.
As the number of multipliers continues to grow, the 2-adder
solution gradually becomes the better one, which can be
explained by the fact that more products are available for
addition, and thus more flexibility exists in terms of pairing
two products for addition. The Pareto curve discloses that the
best time-energy trade-off is a combination of the 1-adder and
the 2-adders solution thus making the decision a matter of time
or energy being the most critical metric.

C. The transposed FIR filter

The transposed FIR filter has a significant amount of
inherent parallelism, and therefore it also makes sense to
conduct experiments with a high number of both multipliers
and adders, i.e., 1-6 multipliers and 1-5 adders. The results are
shown in Figure 10 where the overall conclusion is that more
allocated adders decreases the overall execution time when
increasing the number of multipliers. Further, we discover the
notable shift from the highest to the lowest energy consumption
(for a high number of adders and differently for a low number
of adders) when the number of multipliers is increased.

We can explain this behavior by a high degree of idle time
among the adders when only a few multipliers are allocated.
Combined with the fact that more allocated multipliers and
adders enhances the scheduling/binding solution space leads to
the evident observation of decreased execution time as well as

169

10 Execution Tirme versus Number of Multpliers
[
T T

T
s
i

Execution Time [s]

i
% [
Nurnber of Multpliers

xao! Energy Consumption versus Number of Multipliers

—&—1 adder
i / ——2 adders

sl : 0 ; . 3 adders
g = ——d adders

nsumption [J]

Energy Co

3 4
MNumber of Mutpliers

10" Energy versus Time
T

Energy Consumption [J]
T T
T&
&%4
o T

Fig. 10. Scheduling results for the transposed filter structure.

energy consumption for an increase in the HW resources. This
behavior is also reflected in the Pareto curves which illustrates
that a shift towards lower execution time for high allocation
solutions not necessarily increases the energy cost.

D. The symmetric impulse response FIR filter

Our final experiment involves the symmetric structure. This
structure has 1) the number of multiplications decreased by a
factor of two, and 2) operations shuffled such that (some) addi-
tions now are executed prior to the multiplications. We conduct
experiments with up to three multipliers and two adders, the
reason being the fact that executing three multiplications in
parallel will lead to a substantial overhead in terms of idle
power, thus making it more beneficial to execute only the
two multiplications (in the critical path) in parallel and thus
delaying the multiplication as well as the addition which are
outside of the critical path. The result are shown in Figure 11.

The experimental model checking confirms that more allo-
cated HW leads to a reduction in the overall execution time,
and a derived consequence is a relative reduction in the energy
consumption as well, due to decreased idle power consump-
tion. The absolute energy consumption however, increases with
more allocated HW. The Pareto curve indicates that the choice
of optimal adder/multiplier allocation must depend on the
requirements given to the time- and energy-consumption.

V. CONCLUSION

We have demonstrated the UPPAAL CORA model check-
ing tool for energy-aware scheduling of FIR filters. We used
core logic time- and power metrics for the Altera Cyclone IV
FPGA derived empirically for the embedded adder/multiplier.
We found that allocating more HW leads to a decrease in the
overall execution time until the speed-up rate starts to level
off due to an imbalance between HW resources and inherent

10 Execution Time versus Number of Multpliers
[
T T

—e— 1 adder
——2 adders

Execution Time [s]
T T
i

e -

g I I i i i I

(] 1 2 3 4 5 [7
Number of Multpliers
w1g" Energy Consumption versus Number of Multpliers
L ! ! ! ! ! —e— 1 adder
_ ——2adders
ot 1
£
z4r - =
a %@
5ol :
&
0 i i i i i i
] 1 2 3 [5 [7
Number of Multpliers
x1g" Energy versus Time

—&— 1 adder
= ’\‘ A [2adders

Energy Consumptian [J]

Execution Time [s] o

Fig. 11. Scheduling results for the symmetric structure.
2 4 —o— AdderChain
AdderTree
Symmetric
v _| —%— Transposed
2]
<
7]
= (6,5
:I :: _ (3,1)0
< X
e] o \
S o (82" Tz * e
g < B
i @ w)x-\) m
o) (.=
©
<
(]
w _J
o
T T T T T T
2 3 4 5 6 7
Time [10"-8 5]
Fig. 12. Pareto Fronts for the four different structures, (# mult, # add).

parallelism. We found that the absolute energy consumption
increases with more allocated HW which basically relates to
the idle-power overhead. At the same time, we saw that the
relative energy consumption among the various HW allocations
is decreasing with higher number of functional units. This is a
very interesting finding as it emphasizes that idle power should
be seriously considered during HW allocation. Increasing HW
allocation should therefore be done such that we reach a
proper trade-off between “as much HW as possible doing

168

specific computations”, and “as little HW as possible sitting
idle burning static power”.

Concerning the filter structures, we found that there are
significant differences between their time-and-energy charac-
teristics. In order to do a fair comparison, we derived the Pareto
Optimal time-and-energy curves for the structures, Figure 12.
We conclude that the two transversal filters are those with the
lowest (but also somewhat comparable) performance — energy
as well as execution time. The transposed structure is superior
to both of the transversal filter structures, and it spans a quite
large interval, both on the energy- but in particular on the time
axis. It is therefore fair to conclude that the transposed form is
a sound candidate when it comes to choosing a structure which
can trade off time and energy over large intervals. Further,
among all structures the transposed form is the one which
enables the shortest execution time.

Finally, the symmetric structure represents the best solution
in terms of energy consumption. This is somewhat expected
as the structure holds half the amount of multiplications as
compared to the other structures, and thus it is an obvious
candidate to choose for an SDR front-end, given that the
filter can be designed with a linear phase response. All our
experiments are conducted for filters with order N = 5 but
since all four structures scales regularly in their topology with
increased /N, we can expect our results to also apply for higher
N-values.

REFERENCES

[1] M.-U.-R. Awan et al., “Polyphase filter banks for embedded sample
rate changes in digital radio front-ends,” Communications, ZTE, vol. 9,
no. 4, pp. 3-9, 2011.

[2] M. Mehendale et al., “Low-power realization of fir filters on pro-
grammable dsps,” Trans. on VLSI Systems, IEEE, vol. 6, no. 4, pp.
546-553, 1998.

[3] G. Xu et al., “Low power design for fir filters,” 10th Int. Conf. on ASIC
(ASICON), IEEE, pp. 1-4, 2013.

[4] E. A. Lee et al., “Static scheduling of synchronous data flow pro-
grams for digital signal processing,” Computers, IEEE Transactions on,
vol. 36, no. 1, pp. 24-35, 1987.

[5] UPPAAL, “Uppaal - an integrated tool environment for modeling, val-
idation and verification of real-time systems,” http://www.uppaal.org/.

[6] P. Koch, “FPGA energy profiles for arithmetic functions,” Deliverable
D4.2, SENSATION Project, EU, Tech. Rep., Oct. 2014.

[7]1 E.R.Wognsen et al., “Energy-aware scheduling of FIR filter structures,”
Deliverable D4.3, SENSATION Project, EU, Tech. Rep., Oct. 2015.

[8] A. V. Oppenheim et al., Discrete-time signal processing. Pearson,

2014.

[9] N. Shenoy, “Retiming: Theory and practice,” Integration, the VLSI
Journal, vol. 22, no. 1, pp. 1-21, 1997.

[10] Altera, “De2-115 development board, users manual,” http://www.altera.
com/education/univ/materials/boards/de2-115/unv-de2-115-board.html.

[11] A. Technologies, “N6705b dc power analyzer, users
guide,” http://www.keysight.com/en/pd-1842303-pn-N6705B/
dc-power-analyzer-modular-600-w-4-slots.

[12] ITRS, “International technology roadmap for semiconductor,” http:
/Iwww.itrs.net/.

[13] K. G. Larsen et al., “As cheap as possible: Efficient cost-optimal
reachability for priced timed automata,” in Computer Aided Verification,
Proc. 13th International Conference, CAV, vol. 2102. Springer, 2001,
pp. 493-505.

[14] L. Aceto et al., “A cost/reward method for optimal infinite scheduling

in mobile cloud computing,” in Proc. 12th Int. Conf. on Formal Aspects
of Component Software, 2015, pp. 95-112.

