Proteomics-driven design of endothelial stress-based protein array for disease prognostics - applied to plasma and cerebrospinal fluid

Allan Stensballe, PhD (ATV)
Group Leader of the Laboratory for Medical Mass Spectrometry (LMM)
Department of Health Science and Technology
Aalborg University, Denmark
Proteome challenges with EV
Nasty bio fluids & high complexity for proteome scientists..

+1470 proteoforms

+6 proteoforms

(Bellingham et al, 2012)
Stress and treatments

- Etomoxir
- Oxidative stress
- Fe$^{3+}$

Enrichment

CD9, CD44, CD63, CD41, CD81, and MHC2R.

Proteomics

Pros:
- Comprehensive analysis

Cons:
- The sample purity
The EV Array
EV surface exposed membrane protein markers

The EV array principle
Pros:
- Multiplexed up to 70 Ab

Cons:
- Only human samples

Application
Pros:
- Multiple bio fluids

Cons:
- Availability of Ab
- Only surface-exposed biomarkers

Proteome driven design of EVarray

Combined empirical and literature information...

- No enrichment needed
- mAb based capture and detection + 70 parallel detections

Enrichment imperative

Quantitative Identification

Protein ID
PTM’s
Abundance
Topology
Complexes

Quantitative Phenotyping

PubMed
Vesiclepedia
ExoCarta
Endothelial stress in Neuroinflammation

Inside-out or outside-in in MS - That's the BIG question...

- From OUTSIDE IN:
 - Inflammation
 - Demyelination
 - Axonal degeneration

- From INSIDE OUT:
 - Inflammation
 - Demyelination
 - Axonal degeneration
Multiple Sclerosis & MRI correlation
Combined proteomics and Protein arrays (Mesoscale; EVarray)

5 Multiple Sclerosis patients
Weekly MRI scanning (8 weeks)

FLAIR MRI
Gd MRI
Plasma samples

EV Array
33 markers

41 soluble markers
cyto- and chemokines

Proteomics
Multiple Sclerosis & Cytokine, EV correlation

Combined proteomics and Protein arrays (Mesoscale; EVarray)

Quantitative Proteomics at proteome level

Mesoscale

Endothelial stress optimized EVarray

<table>
<thead>
<tr>
<th>EV</th>
<th>Immune</th>
<th>Endothelial</th>
<th>Platelet</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amnion V</td>
<td>CD3</td>
<td>CD31</td>
<td>CD43a</td>
<td>LAMP2</td>
</tr>
<tr>
<td>CD9</td>
<td>CD8x</td>
<td>CD51</td>
<td>CD82 E</td>
<td>TNF RII</td>
</tr>
<tr>
<td>CD33</td>
<td>CD19</td>
<td>CD48</td>
<td>CD82 EP</td>
<td>Tspan8</td>
</tr>
<tr>
<td>CD61</td>
<td>CD28</td>
<td>CD142</td>
<td>MAKP3</td>
<td></td>
</tr>
<tr>
<td>CD92</td>
<td>CD100</td>
<td>Thrombospondin-1</td>
<td>VE-Cadherin</td>
<td>CD105</td>
</tr>
<tr>
<td>TNF RI</td>
<td>MIC A/B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSG101</td>
<td>CTL.A4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFX</td>
<td>HLA DQ/DPOQ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiple Sclerosis & Cytokine, EV correlation

Combined proteomics and Protein arrays (Mesoscale; EVarray)
Acknowledgements

EVsearch - A Danish research center with focus on extracellular vesicles
Acknowledgements
A wide network of collaborators

Laboratory for Medical Mass Spectrometry, Aalborg University, Denmark
- Tue Bjerg Bennike
- Michael Kruse Meyer
- Kenneth Kastaniegaard

Aarhus University, Denmark
- Gunna Christiansen

Aalborg University Hospital
- Malene M. Jørgensen
- Rikke Bæk
- Kim Varming

Odense University Hospital

Havard Medical School
- Zsolt Illes
- Tobias Sejrbaek
- Francois Cotton
- Charles Guttmann

Aalborg University, Biomedicine
- Torben Moos
- Vladimir Zachar
- Søren Nielsen
- John Nieland

Odense University
- Christian Wiwie,
- Jan Baumbach

Funding sources

[Various logos and institutions]