Analysis and Active Damping of Multiple High Frequency Resonances in DFIG System

Yipeng Song, Member, IEEE, Frede Blaabjerg, Fellow, IEEE, Xiongfei Wang, Member, IEEE

Abstract — As the wind power generation develops, the Doubly Fed Induction Generator (DFIG) based wind power system are more and more likely to operate in the emerging weak network rather than the conventional stiff network. Due to the comparatively large impedance of the weak network than the stiff grid, the DFIG system may be subject to the resonances due to the impedance interaction between the DFIG system and the weak network. Especially, when connected to a series π sections weak network, the Multiple High Frequency Resonances (MHFR) may occur and require careful studies. The impedance modeling of the DFIG system and the series π sections weak network is firstly demonstrated in this paper. Then, due to the multiple magnitude peaks of the series π sections of the weak network, the MHFR will be produced and can be theoretically explained based on the impedance modeling results. For the purpose of mitigating the MHFR, an active damping strategy which introduces a virtual impedance, including a phase leading compensation unit and a virtual positive resistance, is proposed and demonstrated. Simulations are conducted to validate the DFIG system MHFR as well as the proposed active damping strategy.

Index Terms — DFIG system; series π sections weak network; multiple high frequency resonances; virtual impedance; active damping.

I. INTRODUCTION

Due to the continuously increasing demand for the renewable energy within the entire world, the wind power generation has experienced fast growth during the past few decades. The Doubly Fed Induction Generator (DFIG) based wind power system is a popular commercial wind power solution implemented around globe [1]-[3].

As the distributed generation develops fast, the increasing capacity of wind power generation has been achieved by connecting more and more DFIG based wind turbine systems to offshore and distributed networks [4]-[8]. These types of networks are typically smaller scale weak networks with comparatively large network impedances compared to the stiff grid network. As a consequence, the impedance interaction between the weak network and the DFIG system can no longer be neglected, but requires serious attention. There are mainly two kinds of resonances in the DFIG system when connected to the weak network, i.e., the Sub- Synchronous Resonance (SSR) in the case of the series compensated weak network [9]-[15]; the High Frequency Resonance (HFR) in the case of the parallel compensated weak network [16]-[18].

As it has been well analyzed in previous studies [9]-[15], in order to improve the transmission capability of the long distance cables, the series capacitance is employed to reduce the electric length of the long-distance transmission line. However, SSR can unfortunately be produced, and it is pointed out that the impedance interaction between the DFIG system and the series compensated grid network is the direct cause of the SSR [9]-[15]. In order to conduct the theoretical analysis of the SSR, the DFIG system impedance modeling needs to be established as an analysis platform. Refs. [9]-[11] developed the DFIG system positive and negative impedance modeling by the harmonic linearization method. The influences of the rotor current control, phase locked loop control and the various rotor speeds are also investigated. The impedance modeling of the entire DFIG system and the series compensated weak grid network are also reported in [12], with the conclusion that the interaction between the electric network and the converter controller is the main contribution of the SSR phenomena.

As to the active damping of SSR, a virtual resistance is inserted to achieve damping of the DFIG SSR in [9], but yet no theoretical analysis and design procedure of this virtual resistance is reported in details. Similarly, the design of an auxiliary SSR damping controller and the selection of the control signals in the DFIG converters are reported in [15], and several alternative active damping control variables are discussed. In contrast, instead of reshaping the impedance of the DFIG system, a Thyristor- Controlled Series Capacitor (TCSC) – based method is developed [13] to flexibly adjust the series compensated capacitance and then the potential SSR can be avoided.

On the other hand, besides the series compensated weak network, the DFIG system is also likely to be connected to the parallel compensated weak network. As it is discussed in [16]-[18], the High Frequency Resonance (HFR) can be a consequence of the impedance interaction between the DFIG system and the parallel compensated weak network. The frequency of the HFR is estimated based on the Bode diagram of the DFIG system impedance and the parallel compensated weak network impedance in [16]-[18]. Then, the HFR can be mitigated by introducing a virtual impedance to appropriately reshape the DFIG system impedance in order to reduce the phase difference to smaller than 180° and then the HFR can be eliminated [16].

The instability phenomenon is also likely to occur in the grid connected converter [19]-[27] when connected to a
weak grid, and its active damping strategies have been well investigated recently. A virtual impedance across the grid-side inductance, which can be represented by a series RL branch in parallel with a negative inductance, is added through the grid current feedback control [19]. Refs. [20]-[21] introduced a virtual RC impedance, i.e., the positive resistance to achieve better performance of harmonic resonance damping, and a negative inductance to reduce the grid side inductor for the purpose of better harmonic distortion mitigation. An overview of the virtual impedance based active damping strategy for the grid-connected voltage source and current source converters is summarized in [22], and several alternative methods for implementing the virtual impedance are proposed. The current controller parameters are optimally designed to improve its stability under weak network [23]-[24]. Moreover, the digital control delay is also investigated and mitigated in [25]-[26] in order to improve the converter performance.

Besides the above mentioned series and parallel compensated weak networks, the series π sections weak network is also a possible network configuration [28]-[29]. This kind of weak network consists of series connection of resistances and inductances between both ends of the transmission line, and shunt capacitances are connected between each end and the ground. Unlike the series and parallel compensated weak networks which only have one single magnitude peak, the series π sections have more than one magnitude peak (the same amount of the π sections), resulting in more than one magnitude intersection points between the DFIG system and the weak network, then multiple resonances may occur consequently.

The open-loop transfer function, which is to evaluate and analyze a series of high-frequency resonant peaks in the voltage source inverter due to the high-order LC configuration, is deduced in [28]-[29], then a cascaded notch filters are adopted to suppress the resonant peaks, thus the resonance can be mitigated as a result. Compared with [28]-[29], the main differences in this paper are, 1) different control subjects are discussed, in this paper the authors discuss the DFIG system, while the VSI is discussed in [28]-[29]; 2) different resonance analysis methods are adopted, in this paper the impedance modeling based analysis method is used, while the open-loop transfer function which shows a series of high frequency resonant peaks is used in [28]-[29]; 3) different implementations of active damping, in this paper the virtual impedance inserted in the DFIG stator branch is implemented, while the cascaded notch filter is adopted in [28]-[29]; 4) different operation principles, in this paper the authors intend to reduce the phase difference between the DFIG and the weak network below 180°, while [28]-[29] intend to eliminate the resonant peaks by the cascaded notch filter.

Then, it is clear that the active damping strategies for the HFR in the DFIG system as well as the grid connected converter can be employed to mitigate the MHFR in the DFIG system. The virtual impedance can be introduced to appropriately reshape the impedance of DFIG system, and the detailed explanations on this virtual impedance will be given in following discussion.

It needs to be explained that, 1) the proposed MHFR active damping strategy can be used to mitigate the single HFR since it can be seen as a special case of MHFR; 2) the active damping strategy for the single HFR has been investigated in [18], where the single HFR within a wide frequency range can be mitigated. However this frequency range is smaller than the one for MHFR discussed in this paper, i.e., 1100 Hz to 1600 Hz for single HFR in [18], while 500 Hz to 2500 Hz for MHFR in this paper; 3) Moreover, the virtual impedance for MHFR in this paper is more complicated than the one for single HFR in [18]. In this paper the virtual impedance includes the virtual resistance $R_v$, phase leading compensation unit with the $s^2$ and the reciprocal of two-order bandpass filter with the bandpass frequency $f_{bp}$ and bandwidth parameter $\omega_c$. While for the active damping of single HFR in [18], the virtual impedance contains the virtual resistance $R_v$ and high-pass filter cutoff frequency $f_{cut}$. Therefore, it can be concluded that compared with the active damping strategy for single HFR in [18], the active damping for MHFR in this paper has a much wider effective damping frequency range at the cost of more complicated virtual impedance structure.

This paper is organized as follows: the impedance modeling of the DFIG and the Rotor Side Converter (RSC), together with the impedance modeling of the Grid Side Converter (GSC) and the LCL filter, is first established in Section II. The MHFR between the DFIG system and the series π sections weak network is analyzed in Section III, then the proposed active damping strategy in the DFIG stator branch with the introduction of the phase leading compensation unit and the virtual positive resistance are illustrated in details. The simulation setup is built up to validate the MHFR analysis as well as the proposed active damping strategy in Section IV. Finally, the conclusions are given in Section V.

II. IMPEDANCE MODELING OF DFIG SYSTEM AND SERIES II SECTIONS WEAK NETWORK

Before analyzing the MHFR, the impedance modeling of the DFIG system and the series π section network need to be established first. It should be pointed out that a single DFIG system is discussed in this paper. In a wind farm containing several DFIGs working in parallel, an aggregated modeling of the DFIG system is normally adopted [12]-[15]. For instance, concerning SSR in DFIG, the aggregated DFIG system with 50 single turbines is investigated in [12]-[15]. The difference between a single DFIG and an aggregated DFIG system in [12] is the proportional smaller parameters of the DFIG system. Thus, the proposed MHFR analysis method and the active damping strategy in this paper are still effective in respect to the aggregated DFIG system by adjusting the parameters from a single DFIG to an aggregated DFIG.
A. General description of the investigated DFIG system

Fig. 1 shows a diagram of the DFIG system connected to a series \( \pi \) sections weak grid. The RSC controls the rotor voltage to deliver the DFIG stator output active and reactive power, the GSC provides a stable dc-link voltage, and the LCL filter is adopted due to its better switching harmonics filtering performance. A three-terminal step-up transformer \( T_{\text{DFIG}} \) is connected between the DFIG stator winding, the LCL output terminal and the Point of Common Coupling (PCC) for the purpose of increasing the voltage level of the DFIG system, i.e., GSC output voltage \( V_G \) = 480 V. DFIG stator voltage \( V_s \) = 690 V, PCC voltage \( V_{\text{PCC}} \) = 1 kV in this paper. The parameters of this transformer can be found in Table I.

The series \( \pi \) section network contains several single \( \pi \) sections, and the single \( \pi \) section consists of network inductances \( L_{\text{NET}} \) and network resistances \( R_{\text{NET}} \) in series connection between both ends of each single section; the network shunt capacitance \( C_{\text{NET}} \) is connected between each end and the ground. It should be noted that for the sake of simplicity, only two series \( \pi \) sections are shown in Fig. 1 in this paper. The two-terminal transformer \( T_{\text{NET}} \) is connected between the PCC and the high voltage transmission cable, i.e., PCC voltage \( V_{\text{PCC}} \) = 1 kV and high voltage \( V_{\text{HV}} \) = 25 kV in this paper. The parameters of this transformer can be found in Table I.

Note that the transformer \( T_{\text{DFIG}} \) is connected between the DFIG stator winding and the LCL filter, therefore the leakage inductor of the transformer can be regarded as part of the stator winding inductor and the inductor \( L_f \). By conducting this approximation, the impedance of the DFIG system remains accurate, and the following analysis complexity can be simplified.

B. DFIG system impedance

The grid part of the DFIG system contains the GSC and the LCL filter, thus based on [19], the impedance modeling can be presented as shown in Fig. 2, where \( G_c(s-j\omega_0) \) is the PI controller including the proportional part \( K_{\text{igsc}} \) and the integral part \( K_{\text{igsc}}(s-j\omega_0) \). The parameters are available in Table I. \( G_c(s-j\omega_0) \) is the digital control delay of 1.5 sampling periods caused by the voltage/current sampling and the PWM update [19]. \( \omega_0 \) is the grid network fundamental component angular speed of 100 rad/s, which indicates the reference frame rotation from the stationary frame (where the impedance modeling is built) to the synchronous frame (where the PI closed-loop current control is implemented) as shown in Fig. 1.

Normally, the GSC control has an outer control loop of the dc-link voltage, however due to the slow dynamic response, the dc-link voltage closed-loop control in the GSC is neglected in this paper. The grid synchronization is also neglected in the RSC and GSC control due to similar reasons of slow dynamic responses.

Thus, as shown in Fig. 2, the impedance of GSC current closed-loop control is modeled as one voltage source \( i_{\text{ig}} \) \( G_c(s-j\omega_0) \) and one impedance \( Z_{\text{GSC}} = G_c(s-j\omega_0)G_d(s-j\omega_0) \) in series.

Then, the impedance of the DFIG grid side, including the GSC, the LCL filter and the transformer, can be obtained as,

\[
Z_c = \frac{Z_{\text{GSC}} + Z_{\text{GSC}} + Z_{\text{L}}} {Z_{\text{GSC}} + Z_{\text{L}} + Z_{\text{GSC}}} \tag{1}
\]

where, \( Z_{\text{GSC}} = G_c(s-j\omega_0)G_d(s-j\omega_0) \), \( Z_{\text{L}} = 1/sC_p \), \( Z_{\text{L}} = 1/L_s \), \( Z_{\text{C}} \) is the LCL filter capacitance, \( L_s \) is the converter side inductance, \( L_m \) is the LCL grid side inductance. \( K_i \) is the voltage ratio between \( V_G \) and \( V_{\text{PCC}} \) as defined \( K_i = V_{\text{PCC}}/V_G \).

On the other hand, based on [12], the impedance modeling of the RSC and DFIG generator can be obtained in Fig. 3, and it can be obtained as,
\[ Z_{SR} = K_2 \left( \frac{Z_{Lm}H + (R_s + Z_{Lm})H + Z_{Lm}(R_s + Z_{Lm})}{Z_{Lm} + H} \right) \]  

where \( H = (R_s + Z_{RSC})/\text{slip} + Z_{Lm}; \) \( Z_{RSC} = G_s(s-j\omega_0)G_r(s-j\omega_0); \) \( Z_{Lm} = sL_m; \) \( Z_{Lm} = sL_m; \) \( Z_{Lm} = sL_m; \) \( R_s \) is the rotor resistance, \( L_m \) is the mutual inductance, \( L_{mr} \) is the rotor leakage inductance, \( L_{mq} \) is the stator leakage inductance. \( K_2 \) is the voltage ratio between \( V_s \) and \( V_{PCC} \) as defined \( K_2 = V_{PCC}/V_s \).

Since the rotor current control and output voltage are both generated in the rotor stationary reference frame, they need to be rotated back to the stationary frame by the slip angular speed as [9]-[12],

\[ \text{slip} = (s - j\omega_s)/s \]  

where, \( \omega_s \) is the rotor speed.

The impedance of the RSC and DFIG generator \( Z_{SR} \) and the impedance of the GSC and LCL filter \( Z_G \) are connected in parallel, thus the DFIG system impedance \( Z_{SYSTEM} \) can be presented based on (1) and (2) as,

\[ Z_{SYSTEM} = \frac{Z_GZ_{SR}}{Z_G + Z_{SR}} \]  

A Bode diagram of the RSC and DFIG generator impedance \( Z_{SR} \), the Grid Side Converter and LCL filter impedance \( Z_G \) and the DFIG system impedance \( Z_{SYSTEM} \) are plotted in Fig. 4, with the parameters given in Table I. As it can be observed from Fig. 4, the DFIG system impedance \( Z_{SYSTEM} \) has a phase response larger than 90° at the frequency above 900 Hz, where the MHFR is most likely to happen and the detailed explanation will be provided in following.

![Bode diagram of the RSC and DFIG generator impedance](image)

Fig. 4. Bode diagram of the Rotor Side Converter and DFIG generator impedance \( Z_{SR} \), the Grid Side Converter and LCL filter impedance \( Z_G \) and the DFIG system impedance \( Z_{SYSTEM} \), the parameters are listed in Table I.

### TABLE I. PARAMETERS OF DFIG SYSTEM AND WEAK NETWORK

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DFIG generator</strong></td>
<td></td>
</tr>
<tr>
<td>Rated Power</td>
<td>2 MW</td>
</tr>
<tr>
<td>( R_s )</td>
<td>0.0015 Ω</td>
</tr>
<tr>
<td>( R_r )</td>
<td>0.0016 Ω</td>
</tr>
<tr>
<td>( L_m )</td>
<td>0.04 mH</td>
</tr>
<tr>
<td>( L_{mr} )</td>
<td>0.06 mH</td>
</tr>
<tr>
<td>( L_r )</td>
<td>3 mH</td>
</tr>
<tr>
<td>( f_s )</td>
<td>5 kHz</td>
</tr>
<tr>
<td>( f_{sr} )</td>
<td>2.5 kHz</td>
</tr>
<tr>
<td>LCL filter</td>
<td></td>
</tr>
<tr>
<td>( L_s )</td>
<td>125 μH</td>
</tr>
<tr>
<td>( L_f )</td>
<td>125 μH</td>
</tr>
<tr>
<td>Current Controller Parameters</td>
<td></td>
</tr>
<tr>
<td>( K_{prsc} )</td>
<td>0.1</td>
</tr>
<tr>
<td>( K_{prsc} )</td>
<td>0.1</td>
</tr>
<tr>
<td>( K_{prsc} )</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Series ( \pi ) sections weak network</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>( L_{NET} )</td>
<td>36 mH</td>
</tr>
<tr>
<td>( R_{NET} )</td>
<td>2.06 Ω</td>
</tr>
<tr>
<td>( C_{NET} )</td>
<td>1.024 μF</td>
</tr>
</tbody>
</table>

C. **Series \( \pi \) sections weak network impedance**

According to Fig. 1, the impedance of the series \( \pi \) sections weak network \( Z_{NET} \) can be presented as,

\[ Z_{NET1} = \frac{1}{K_S^2} \left( \frac{sL_{NET} + R_{NET}}{sC_{NET} + R_{NET}} \right) \]  

\[ Z_{NET2} = \frac{1}{K_1} \left( \frac{sL_{NET} + R_{NET} + Z_{NET1}}{sC_{NET} + R_{NET} + Z_{NET1}} \right) \]  

\[ Z_{NET3} = \frac{1}{K_1} \left( \frac{sL_{NET} + R_{NET} + Z_{NET1} + Z_{NET2}}{sC_{NET} + R_{NET} + Z_{NET1} + Z_{NET2}} \right) \]

where, \( R_{NET} \) and \( L_{NET} \) are the network series resistor and inductor, \( C_{NET} \) is the network shunt capacitor. \( Z_{NET1}, Z_{NET2} \) and \( Z_{NET3} \) are the network impedance of only one single \( \pi \) section, two and three \( \pi \) sections respectively. Note that the single \( \pi \) section \( Z_{NET1} \) is the same as the parallel compensated weak network discussed in [16]-[17]. \( K_1 \) is the voltage ratio between \( V_{PCC} \) and high voltage \( V_{HV} \) of the transmission cable defined as \( K_1 = V_{HV}/V_{PCC} \).

Fig. 5 shows the Bode diagram of a two series \( \pi \) sections weak network impedance \( Z_{NET2} \) with \( C_{NET} = 1.024 \) or 0.512 μF, \( R_{NET} = 2.06 \) Ω, \( L_{NET} = 36 \) mH respectively. It needs to be pointed out that the above weak network parameters are calculated based on a long-distance transmission cable, its resistance is 41.2 mΩ / km, inductance is 0.72 mH / km, shunt capacitance is 0.02048 μF / km, the length of per \( \pi \) section is 50 km. These weak network parameters are close to the default values used in Three-Phase PI Section Line Modules in MATLAB Simulink [30], so they can be considered reasonable for the following analysis and simulation validation.

It should be noted that for the sake of simplicity, only \( Z_{NET2} \) is taken as an example, while the \( Z_{NET1} \) and \( Z_{NET3} \) can be similarly described. As it can be seen from Fig. 5, due to the two \( \pi \) sections in series connection, the weak network has two magnitude peaks. Apart from the magnitude peak range, the phase response of the weak network is either 90° or -90°. Since the phase response of the DFIG system is always 90° at frequency above 900 Hz as shown in Fig. 4, the resonances will occur when the magnitude intersection points are located in the range where the phase response of the weak network is -90°.

By comparing the impedance shape of the series \( \pi \) sections weak network with two different network shunt capacitances \( C_{NET} = 1.024 \) or 0.512 μF in Fig. 5, it can be
found that the magnitude peak shifts towards higher frequency range as the $C_{NET}$ becomes smaller. This character results in the higher MHFR frequency when $C_{NET}$ becomes smaller.

![Bode diagram of the series π sections weak network impedance with $C_{NET} = 1.024 \mu F$, $R_{NET} = 2.06 \Omega$, $L_{NET} = 36 \, mH$](image)

**III. MHFR AND ACTIVE DAMPING STRATEGY**

Based on the impedance modeling of the DFIG system and the series π sections weak network, the MHFR can be analyzed in this section. Moreover, the active damping strategy based on the virtual impedance also needs to be introduced to effectively mitigate the MHFR.

**A. MHFR Analysis**

As reported in [16]-[18], a phase difference of 180° between the DFIG system and the weak network at the phase response of 90° at frequencies above 900 Hz as shown in Fig. 4, thus the phase response of -90° in the weak network is prerequisite for the resonance.

![Bode diagram of the DFIG system in Table I and the series π sections weak network impedance with $C_{NET} = 1.024 \mu F$, $R_{NET} = 2.06 \Omega$, $L_{NET} = 36 \, mH$.](image)

Fig. 6 shows the Bode diagram of the DFIG system with its parameters given in Table I and the series π sections weak network impedance with $C_{NET} = 1.024 \mu F$, $R_{NET} = 2.06 \Omega$, $L_{NET} = 36 \, mH$.

As it is shown in Fig. 6, there are two magnitude intersection points between the DFIG system and the series π sections weak network at 930 Hz and 1945 Hz respectively, and the phase difference is 180° at both these frequencies. Consequently, the MHFR at 930 Hz and 1945 Hz will occur.

It should be noted that besides the above resonance frequencies, there exists additional two magnitude intersection points at 340 Hz and 1860 Hz. However no resonances at these frequencies will be produced since the phase difference is smaller than 180°, instead the sufficient phase margin will ensure a stable DFIG system operation at these frequencies. The above analysis will be validated by the simulation results in the following parts.

**B. Active damping strategy**

![Vector diagram of the expected impedance reshaping](image)

Fig. 7 gives out the vector diagram of the expected impedance reshaping of the DFIG system. As it can be observed, if the virtual impedance is appropriately kept within the phase response of -90° to 90° (right half plane), then the phase difference between the reshaped DFIG system and the weak network can be reduced smaller than 180°, and the MHFR can effectively be mitigated. Note that in the following discussion, the expected phase response of the virtual impedance is set to 0°, i.e., virtual positive resistance as shown in Fig. 7 and then consequently almost the largest phase margin can be obtained.

Before introducing the virtual impedance, it should be pointed out that, the digital control delay exists all the time in the DFIG system as presented in (6). As a consequence, the phase delay will inevitably be introduced to the virtual impedance.

$$G_d(s) = e^{-sT_d}$$

(6)

where, the control delay is 1.5 sampling periods [19], $T_d = 300 \, \mu s$, $T_s = 200 \, \mu s$ is the sampling period according to Table I.

The digital control delay causes a phase delay $\Delta \theta$ in the potential MHFR range according to (7), and the vector diagram can be plotted as shown in Fig. 8.

$$\Delta \theta = -2 \pi f T_d$$

(7)

According to (7) and Fig. 8, it can be found out that the phase delay is only determined by the digital control delay
$T_d$ and the delay is linear to the frequency.

In order to introduce the virtual positive resistance with the phase response of $0°$, the phase delay caused by the digital control delay needs to be appropriately compensated by the phase leading compensation unit.

In order to achieve the phase response increasing as the frequency increases, the reciprocal of the bandpass filter is adopted here due to its phase = -90° below $\omega_{bp}$, 0° at $\omega_{bp}$ and 90° above $\omega_{bp}$, which finally can be presented as,

$$G_{bp}(s) = \frac{s^2 + 2\omega_s s + \omega_p^2}{2\omega_s s}$$  \hspace{1cm} (8)

where, $\omega_{bp}$ is the bandpass frequency, $\omega_s$ is the bandwidth.

Besides (8), the additional phase leading of 180° is still required, thus the phase leading unit $G_{lead}(s)$ can be deduced by combining (8) and $s^2$ as,

$$G_{lead}(s) = \frac{s^2}{G_{bp}(s)} = \frac{s^2(s^2 + 2\omega_s s + \omega_p^2)}{2\omega_s s}$$  \hspace{1cm} (9)

Fig. 9 shows the Bode diagram of the proposed phase leading compensation unit $G_{lead}(s)$, with $\omega_c = 2000 \text{ rad/s}$, $\omega_{bp} = 2\pi*1600 \text{ rad/s}$. It can be observed from Fig. 9 that within the potential MHFR range of 800 Hz to 2400 Hz, the phase response of the proposed phase leading compensation unit is close to linear. For instance, the phase = 105° at 800 Hz, and 245° at 2400 Hz. These two phase responses indicate that the phase delay in Fig. 8 can be appropriately compensated, and the phase response after compensation will be within ±20°, which is beneficial to the DFIG system impedance reshaping as shown in Fig. 7.

Besides, the magnitude of the phase leading compensation is also within 160 dB to 170 dB at the interested frequency range, thus ensuring almost the same impedance reshaping within these frequency ranges.

Thus, based on (9) and (6), the proposed virtual impedance $Z_v(s)$ can be presented as,

$$Z_v(s) = R_v G_{lead}(s) G_e(s) = R_v \frac{s^2(s^2 + 2\omega_s s + \omega_p^2)}{2\omega_s s} e^{-T_d s}$$  \hspace{1cm} (10)

where, $R_v$ is the virtual positive resistance, digital control delay $T_d$ is also included in this equation in order to better show the phase response of the virtual impedance.

According to Fig. 9, the proposed phase leading compensation unit has large magnitude response due to the adoption of $s^2$. Here, the virtual resistance $R_v$ can be regarded as such a constant coefficient, and designed as a very small constant $R_v = 4\pi*9 \Omega$ in order to adjust the magnitude of the virtual impedance close to the magnitude of the DFIG system, then the appropriate impedance reshaping can be achieved.

As it can be observed from (10) and Fig. 10, due to the “$s$” in the numerator, the magnitude response of the virtual impedance decreases as the frequency decreases. This means that the proposed virtual impedance has negligible influence on the rotor current fundamental component closed-loop control in the RSC and the original dynamic performance of the rotor current controller can be maintained.

Then, it can be concluded that, due to the appropriate magnitude and phase response of the proposed virtual impedance shown in Fig. 10, the appropriate reshaping of the DFIG system can be achieved, and a sufficient phase margin can be produced, which will be proved in the following.

C. Parameter design of the virtual impedance

According to (10), the parameters of $R_v$, $\omega_{bp}$ and $\omega_c$ need to be designed for the virtual impedance.

1) Design of $\omega_{bp}$

As it is analyzed in Fig. 6, under the specific weak network discussed in this paper, the potential resonance frequency range is between 500 Hz and 2500 Hz and the bandpass frequency $\omega_{bp}$ should be chosen around the central frequency of $\omega_{bp} = 2\pi*1600 \text{ rad/s}$.

2) Design of $\omega_c$

The phase response of the phase leading compensation
unit in (9) is used to compensate the phase delay caused by the digital control delay as shown in Fig. 8.

Thus, as shown in Fig. 8 and Fig. 9, the phase response of the phase leading compensation unit in (9) is expected to be linearly increasing as the frequency increases, thus the \( \omega_c \) can be designed on the basis of the expected linear phase response.

By substituting \( s = j\omega \) into (9) yields the following equation,

\[
G_{\text{lead}}(j\omega) = \frac{j\omega(\alpha_k^2 - \alpha_d^2 + j2\omega\alpha_d)}{2\omega} = -2\omega\alpha_d + j\omega(\alpha_k^2 - \alpha_d^2) \quad (11)
\]

Then, the phase response of (11) can be presented as,

\[
\angle G_{\text{lead}}(j\omega) = \tan^{-1}\left(\frac{\alpha_k^2 - \alpha_d^2}{-2\omega\alpha_d}\right) = \theta_{\text{exp}} \quad (12)
\]

where, \( \theta_{\text{exp}} \) is the expected phase response at the frequency of \( \omega_c \).

Taking the frequency \( \omega_c = 2\pi*800 \) Hz and the corresponding phase response \( \theta_{\text{exp}} = 105^\circ \) (which is determined by the digital control delay in Fig. 8) as an example, the \( \omega_c \) can be calculated according to (12) as \( \omega_c = 2020 \) rad/s; similarly, when \( \omega_c = 2\pi*2400 \) Hz and \( \theta_{\text{exp}} = 245^\circ \), the \( \omega_c \) can be calculated according to (12) as \( \omega_c = 1953 \) rad/s. Thus, in this paper, the \( \omega_c \) is designed as \( \omega_c = 2000 \) rad/s as shown in Fig. 9.

3) Design of \( R_r \)

As shown in Fig. 9, the proposed phase leading compensation unit has a large magnitude response due to the adoption of \( s^2 \). This large magnitude response can be appropriately adjusted by a constant coefficient. Here, the virtual resistance \( R_r \) can be regarded as such a constant coefficient, and \( R_r \) is designed as a small constant \( R_r = 4e-9 \) \( \Omega \) in order to adjust the magnitude of the virtual impedance close to the magnitude of the DFIG system. Then the virtual impedance can have distinctive influence on the DFIG system, and an appropriate impedance reshaping can be achieved. Note that the designing of \( R_r \) should not be too small (otherwise no obvious influence will be produced in the rotor part impedance), and not too large (otherwise the grid part impedance will play dominant role in determining the overall DFIG system impedance, and no enough phase margin can be produced). The detailed discussion on the \( R_r \) concerning the phase margin and the mitigation of MHFR will be conducted in Section III. E.

D. Implementation of virtual impedance in the stator branch

Once the virtual impedance is obtained as shown in (10), it is also important to implement this virtual impedance to the DFIG system.

According to Fig. 3, the rotor branch is in parallel connection with the mutual inductor branch, therefore the proposed virtual impedance will be subject to the mutual inductor value and pose less influence on the DFIG impedance reshaping if it is implemented in the rotor side.

In contrast, the virtual impedance can have more significant influence on the DFIG impedance reshaping if it is proposed in the stator side as shown in Fig. 11.

By introducing the virtual impedance \( Z_v \), the DFIG and RSC impedance \( Z_{SR} \), the total DFIG system impedance \( Z_{\text{SYSTEM}} \) can be presented as,

\[
Z_{\text{SR}} = Z_{\text{Lm}} H + \left( R_r + Z_{\text{Lis}} + Z_v \right) H + Z_{\text{Lm}} \left( R_r + Z_{\text{Lis}} + Z_v \right) \quad (13a)
\]

\[
Z_{\text{SYSTEM}} = \frac{Z_G Z_{\text{SR}}}{Z_G + Z_{\text{SR}}} \quad (13b)
\]

In Fig. 12, the Bode diagram of the DFIG system impedance and the sections \( Z_{\text{NET}} \) (a) two sections \( Z_{\text{NET}} \); (b) three sections \( Z_{\text{NET}} \), with \( C_{\text{NET}} = 1.024 \) \( \mu \text{F} \), \( R_{\text{NET}} = 2.06 \) \( \Omega \), \( L_{\text{NET}} = 36 \) \( \text{mH} \) in (5), Virtual impedance in (10) with \( \omega_c = 2000 \) rad/s, \( \omega_{\text{exp}} = 2\pi*1600 \) rad/s, \( R_r = 4e-9 \) \( \Omega \), \( T_z = 300 \) \( \mu\text{s} \),
Fig. 12 shows the Bode diagram of the DFIG system impedance and the series $\pi$ sections weak network $Z_{NET}$(a) two sections $Z_{NET1}$; (b) three sections $Z_{NET3}$, with $C_{NET} = 1.024 \, \mu F, R_{NET} = 2.06 \, \Omega, L_{NET} = 36 \, mH$ in (5). The virtual impedance in (10) is introduced with $\omega_0 = 2000 \, rad/s, \omega_{hp} = 2\pi*1600 \, rad/s, R_v = 4e-9 \, \Omega, T_d = 300 \, \mu s$.

As it can be seen from Fig. 12(a), before the virtual impedance is implemented, the phase differences between the DFIG system and the two series $\pi$ sections weak network $Z_{NET3}$ at 930 Hz and 1945 Hz are 180°, which causes two resonances.

Once the virtual impedance is introduced, due to the phase response of the virtual impedance around 10° at 930 Hz and 1945 Hz in Fig. 10, the phase difference can be reduced to 150° at 870 Hz and 166° at 1934 Hz. Therefore, the original two MHFRs can be mitigated as a result.

Furthermore, the case of three $\pi$ sections weak network is also shown in Fig. 12(b). It can be observed that the lower magnitude intersection at 731 Hz has a phase difference of 176°, thus no resonance occurs at this frequency; the proposed virtual impedance is capable of reducing the phase difference to 155° at 656 Hz.

While the middle resonance occurs at 1564 Hz due to the phase difference of 185°, by introducing the virtual impedance, the phase difference can be successfully reduced to 174° at 1558 Hz, and the middle resonances can be well mitigated as a result. Note that the phase margin can be further increased by appropriately increasing the virtual positive resistance $R_v$.

The magnitude intersection at 2128 Hz is similar to the first one, and the phase difference at 2128 Hz is 166°, resulting in no resonance, and the phase difference can still be reduced to 142° at 2124 Hz, which helps to validate the effectiveness of the proposed virtual impedance.

Based on the above analysis, it can be concluded that, there are two advantages of the proposed active damping control strategy:

1) No unit for accurate resonance frequency detection is required, instead it is only needed to estimate the approximate MHFR frequency, like between 500 Hz and 2500 Hz in this paper and thereby the control complexity can be reduced.

Moreover, if the grid impedance changes due to the source and load switching, and as long as the potential MHFR frequency remains within the range of 500 Hz to 2500 Hz, the proposed active damping strategy is still able to mitigate the HFR, meaning the predefined parameters are still effective.

However, if a too large grid impedance change is seen and causes a large resonance frequency change, then the virtual impedance parameters may need to be re-designed. This can be seen as a limitation of the proposed active damping strategy;

2) The MHFR within a certain frequency range, rather than single resonance frequency, can be effectively mitigated by introducing the virtual impedance. This virtual impedance can be considered as a virtual positive resistance with phase response close to 0° and thus the phase difference between

the DFIG system and the weak network can be reduced to smaller than 180°.

E. Discussion on the virtual resistance $R_v$

According to (10), the virtual resistance $R_v$ is very important to the amplitude of the virtual impedance. Thus, it is meaningful to discuss the influence of $R_v$ on the phase margin and the mitigation of MHFR when the active damping strategy is enabled.

The authors would like to explain this problem from the following three aspects, with the resonance in 1558 Hz shown in Fig. 12 as an example.

1) On one hand, as it is shown in Fig. 13, the increasing of the $R_v$ from 4e-9 Ω (in red) to 8e-9 Ω (in yellow) and to 16e-9 Ω (in purple) helps to reduce the phase difference between the DFIG system and the weak network from 174° at 1558 Hz, to 168° at 1548 Hz, and to 168° at 1534 Hz. Thus, it can be seen that the increasing of $R_v$ helps to increase the phase margin to certain extent and better mitigation of the MHFR can be achieved.

2) On the other hand, the virtual impedance is inserted into the DFIG stator branch as shown in Fig. 11, and the DFIG rotor part impedance (which contains the virtual impedance reshaping) and thus limited phase margin can be achieved. This point can be further explained from Fig. 13 that when the $R_v$ becomes too large as $R_v = 16e-9 \, \Omega$, it does not cause further phase response decreasing but remains the same phase margin as the case of $R_v = 8e-9 \, \Omega$, and the

![Fig. 13. Bode diagram of the DFIG system impedance with virtual impedance in (10) with $\omega_0 = 2000 \, rad/s, \omega_{hp} = 2\pi*1600 \, rad/s, \mu_s = 300 \, \mu s$, $R_v = 4e-9 \, \Omega, 8e-9 \, \Omega$, 16e-9 Ω.](image-url)
largest phase margin can be achieved as 168° at 1548 Hz when \( R_v = 8 \times 10^{-9} \Omega \).

For this performance is that, as the virtual impedance in the stator branch becomes larger, the grid side impedance plays a more and more important role in determining the overall DFIG system impedance. As a result, the phase response of the DFIG system goes closer and closer to 90° and the phase margin becomes smaller.

3) One more thing is that, it is important to ensure that the introduction of the virtual impedance does not cause any influence on the normal operation of the rotor current control. Thus, too large \( R_v \) is not preferred since the too large \( R_v \) will unfortunately cause certain influence on the rotor current control.

Therefore, based on above discussion, it can be seen that the designing of \( R_v \) should not be too small (otherwise no obvious influence will be produced in the DFIG system impedance reshaping), and not too large (otherwise the grid part impedance will play dominant role in determining the overall DFIG system impedance, and no enough phase margin can be produced).

F. Control block diagram

Fig. 16 shows the control block diagram of the DFIG system MHFR active damping strategy through the virtual impedance implemented in the stator current feedforward control. As it can be seen, for the RSC control, an Enhanced Phase Locked Loop (EPLL) [4]-[6] is able to provide the information of the grid voltage fundamental synchronous angular speed \( \omega_1 \) and angle \( \theta_1 \), while an encoder gives out the DFIG rotor position \( \theta \) and speed \( \omega_r \). The rotor current \( I_{sd} \) is first sampled and then controlled according to the reference value \( I_{sd}^* \) by a PI controller to output the harvested wind energy. The stator current \( I_{sd} \) is also sampled for the feedforward control with the introduction of the virtual impedance. The output of the rotor current PI closed-loop control \( V_{sd}^* \) and the output of virtual impedance resonance damping \( V_{sdv}^* \) are added, together with the decoupling compensation, giving out the rotor control voltage \( V_{sr}^* \) which is then transformed to the rotor stationary frame and delivered as the input to the Space Vector Pulse Width Modulation (SVPWM).

![Control block diagram of the DFIG system MHFR active damping strategy through virtual impedance.](image-url)
As for the GSC control, the dc-link voltage \( V_{dc} \) is well regulated by a PI controller, and its output is delivered as the converter side inductance filter current reference \( I_{sabc} \), which is used to regulate the actual converter side inductance filter current \( I_{abc} \) by a PI controller. Similarly, the GSC control voltage \( V_{gabc} \) can be obtained by the PI current controller output and the decoupling compensation unit.

**IV. SIMULATION VALIDATION**

In order to validate the proposed MHFR active damping strategy, a simulation model is built up, the control block is shown in Fig. 16, and the DFIG system parameters can be found in Table I. The rotor speed is set to 800 rpm (0.8 p.u.), with synchronous speed of 1000 rpm (1.0 p.u.). The dc-link voltage is 1200 V. The switching frequency \( f_{sw} \) for both RSC and GSC is 2.5 kHz, the sampling frequency \( f_s \) for both RSC and GSC is 5 kHz.

Fig. 17 shows the simulation results of MHFR in the DFIG system under sub-synchronous speed (800 rpm, 0.8 p.u.) (a) steady state when the active damping strategy is disabled; (b) steady state when the active damping strategy is enabled; (c) transient state at the instance of enabling the active damping strategy; (d) FFT analysis result of the steady state response.

As shown in Fig. 17(a), when the active damping strategy is disabled, the MHFR occurs at 952 Hz and 1977 Hz in the entire DFIG system, including the stator voltage and current, rotor current, grid side current, stator output power and grid side output power. The simulation results match well with the theoretical analysis in Fig. 6 as 930 Hz and 1945 Hz. According to the stator voltage distortion analysis shown in Fig. 17(d), the MHFR consists mainly of 952 Hz (6.9%) and 1977 Hz (45.9%) components. Thus, the simulation result is able to verify the analysis of the impedance interaction based MHFR in the DFIG system connected to the series \( \pi \) sections weak network.

It should be noted that the amplitude of the resonance is determined by the equivalent resistance of both the DFIG system and the weak network at the resonance frequency. This indicates that a smaller value of the equivalent resistance will result in a larger amplitude of the resonance. For instance, when the equivalent resistance at 952 Hz is 10 times larger than the equivalent resistance at 1977 Hz, then a larger amplitude of the resonance at 1977 Hz will occur compared to the resonance at 952 Hz.

In practice, the equivalent resistance at the resonance frequency is subject to several factors, which are involved in the impedance expression, including the parameters of the DFIG machine and the LCL filter, the weak network parameters and the current controller parameters. Therefore, the amplitude of the resonance is not discuss in detail in this paper.

Once the active damping strategy is enabled, the MHFR can be successfully mitigated, with an obvious improvement in the DFIG system variables observed from Fig. 17(b). The stator voltage distortion analysis result is shown in Fig. 17(d), where the previous large resonance components in the stator voltage can be well mitigated as 952 Hz: 0.8%, 1977 Hz: 1.1%, which are sufficiently small to be neglected. Besides, the stator current, rotor current and grid current become much more sinusoidal, the stator output power and grid side output power become much smoother. Thus, the effectiveness of the proposed active damping strategy can be validated.

Fig. 17(c) shows the transient response at the instance of enabling the active damping strategy. It can be observed that, before enabling, the large resonance components exist in the DFIG system; however, once the active damping strategy is enabled, it is able to mitigate the resonance components within 20 ms. Thereby, a good dynamic performance of the proposed active damping strategy can be validated, and makes this strategy applicable in the practical cases.
Based on the simulation results in Fig. 17, the theoretical analysis of MHFR, which is caused by the impedance interaction between the DFIG system and the series π sections weak network, can be verified. Moreover, the proposed active damping strategy with the introduction of the phase leading compensation unit and virtual positive resistance is proved to be able to mitigate the MHFR by reducing the phase difference and producing an appropriate phase margin.

Besides the non-divergent MHFR in the DFIG system shown in Fig. 17, the divergent MHFR is also possible to occur. Hence, it is meaningful to discuss the active damping strategy under the circumstance of divergent MHFR. The following simulations regarding the divergent MHFR are conducted with the same parameters as the case in Fig. 17, but only different parameters of weak network shunt capacitance is half value of the Fig. 17, that is, \( C_{\text{NET}} = 0.512 \ \mu\text{F} \).

Fig. 18 shows the simulation result of divergent MHFR when the active damping strategy is disabled. It can be seen that the DFIG system fails to operate stable, and divergence with extreme large amplitude of stator voltage and current, rotor current and output power can be seen. In practice, such performance will trigger the over-voltage and over-current protection, while the simulation results are shown here in order to show the occurrence of DFIG system divergence. The FFT analysis shows that the divergence mainly contains the resonance components at 2720 Hz of 61.2 p.u. of fundamental component.

Fig. 19 shows the simulation result of divergent MHFR when the active damping strategy is enabled at 0.1 s. Note that the divergence starts to develop at 0 s, and the divergence is still not so large by the time of 0.1 s and the DFIG system can still be brought back to stability at 0.1 s.

It can be seen that once the active damping strategy is enabled at 0.1 s, the stator voltage with the divergence amplitude around 6 p.u. can be suppressed, and the other
variables including the stator current, rotor current, output power can all be brought back to stable operation. The FFT analysis of stator voltage shows the resonance components of 2800 Hz: 17.6% and 1175 Hz: 1.6%.

Therefore, by comparing the simulation results in Fig. 18 and Fig. 19, it can be concluded that the proposed active damping strategy is able to suppress the divergence MHFR in the DFIG system and bring the system back to stable operation, which is beneficial to the practical performance of the DFIG system.

V. CONCLUSION

This paper has performed the analysis of the MHFR in the DFIG system under series π sections weak network, and proposed an active damping strategy based on the introduced virtual impedance, which consists of the phase leading compensation unit and the virtual positive resistance. Several conclusions can be drawn as:

1) The MHFR occurs when the DFIG system is connected to the series π sections weak network due to the phase difference of 180° at the multiple magnitude intersection points;
2) The proposed virtual impedance, which consists of a phase leading compensation unit and a virtual positive resistance, can appropriately reshape the DFIG system impedance, and mitigate the resonances by reducing the phase difference and producing appropriate phase margin;
3) The proposed active damping strategy is able to simultaneously mitigate the multiple resonances within a certain wide frequency range, and fast dynamic performance can be ensured.

REFERENCES


Yipeng Song (M’16) was born in Hangzhou, China. He received the B.Sc. degree and Ph.D. degree both from the College of Electrical Engineering, Zhejiang University, Hangzhou, China, in 2010 and 2015. He is currently working as a Postdoc at the Department of Energy Technology, Aalborg University, Denmark. His current research interests are motor control with power electronics devices in renewable-energy conversion, particularly the control and operation of doubly fed induction generators for wind power generation.

Frede Blaabjerg (S’86–M’88–SM’97–F’03) was with ABB-Scandia, Randers, Denmark, from 1987 to 1988. From 1988 to 1992, he was a Ph.D. Student with Aalborg University, Aalborg, Denmark. He became an Assistant Professor in 1992, Associate Professor in 1996, and Full Professor of power electronics and drives in 1998. His current research interests include power electronics and its applications such as in wind turbines, PV systems, reliability, harmonics and adjustable speed drives. He has received 17 IEEE Prize Paper Awards, the IEEE PELS Distinguished Service Award in 2009, the EPE-PEMC Council Award in 2010, the IEEE William E. Newell Power Electronics Award 2014 and the Villum Kann Rasmussen Research Award 2014. He was an Editor-in-Chief of the IEEE TRANSACTIONS ON POWER ELECTRONICS from 2006 to 2012. He is nominated in 2014 and 2015 by Thomson Reuters to be between the most 250 cited researchers in Engineering in the world.

Xiongfei Wang (S’10–M’13) received the B.S. degree from Yanshan University, Qinhuangdao, China, in 2006, the M.S. degree from Harbin Institute of Technology, Harbin, China, in 2008, both in electrical engineering, and the Ph.D. degree from Aalborg University, Aalborg, Denmark, in 2013. Since 2009, he has been with the Aalborg University, Aalborg, Denmark, where he is currently an Assistant Professor in the Department of Energy Technology. His research interests include modeling and control of grid-connected converters, harmonics analysis and control, passive and active filters, stability of power electronic based power systems. He received an IEEE Power Electronics Transactions Prize Paper award in 2014. He serves as the Associate Editor of IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS and the Guest Associate Editor of IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS Special Issue on Distributed Generation.