Correlation between Fragility and Configurational Heat Capacity in Calcium Aluminosilicate Glasses
Bechgaard, Tobias Kjær; Mauro, John C.; Bauchy, Mathieu; Yue, Yuanzheng; Jensen, Lars Rosgaard; Smedskjær, Morten Mattrup

Publication date: 2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: december 08, 2018
Correlation between Fragility and Configurational Heat Capacity in Calcium Aluminosilicate Glasses

Tobias K. Bechgaard¹, John C. Mauro², Mathieu Bauchy³, Yuanzheng Yue¹, Lars R. Jensen⁴, Morten M. Smedskjaer¹,*

¹ Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
² Science and Technology Division, Corning Incorporated, Corning, USA
³ Department of Civil and Environmental Engineering, University of California, Los Angeles, USA
⁴ Department of Mechanical and Manufacturing Engineering, Aalborg University, Aalborg, Denmark

* Corresponding author. E-mail: mos@bio.aau.dk

Abstract: Enabling accurate prediction of the properties of aluminosilicate glasses and glass-forming liquids is important for the development of new glass compositions for high-tech applications. In this study, we use a combined topological and thermodynamic approach to connect the configurational heat capacity ($C_{p,\text{conf}}$) with the liquid fragility (m) and glass transition temperature (T_g) of calcium aluminosilicate glasses. To obtain glasses with different structural and dynamical features, we study two glass series; one at the tectosilicate join with varying SiO$_2$ content and one with constant CaO content but varying Al$_2$O$_3$/SiO$_2$ ratio. $C_{p,\text{conf}}$ is determined using differential scanning calorimetry (DSC), while m and T_g are determined through both DSC and direct viscosity measurements. The $C_{p,\text{conf}}$ model is found to generally predict the measured data well, but deviations between modelled and measured $C_{p,\text{conf}}$ values appear for the strongest glasses in the tectosilicate series and for the most peraluminous glasses in the constant CaO series. We discuss the origins of these model-data discrepancies based on the structural evolution in the glasses as determined through Raman spectroscopy measurements.

Keywords: calcium aluminosilicate glasses, configurational heat capacity, fragility, glass transition, network structure.