Correlation between Fragility and Configurational Heat Capacity in Calcium Aluminosilicate Glasses
Bechgaard, Tobias Kjær; Mauro, John C.; Bauchy, Mathieu; Yue, Yuanzheng; Jensen, Lars Rosgaard; Smidskjær, Morten Mattrup

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Correlation between Fragility and Configurational Heat Capacity in Calcium Aluminosilicate Glasses

Tobias K. Bechgaard1, John C. Mauro2, Mathieu Bauchy3, Yuanzheng Yue1, Lars R. Jensen4, Morten M. Smedskjaer1,*

1Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
2Science and Technology Division, Corning Incorporated, Corning, USA
3Department of Civil and Environmental Engineering, University of California, Los Angeles, USA
4Department of Mechanical and Manufacturing Engineering, Aalborg University, Aalborg, Denmark

*Corresponding author. E-mail: mos@bio.aau.dk

Abstract: Enabling accurate prediction of the properties of aluminosilicate glasses and glass-forming liquids is important for the development of new glass compositions for high-tech applications. In this study, we use a combined topological and thermodynamic approach to connect the configurational heat capacity ($C_{p,\text{conf}}$) with the liquid fragility (m) and glass transition temperature (T_g) of calcium aluminosilicate glasses. To obtain glasses with different structural and dynamical features, we study two glass series; one at the tectosilicate join with varying SiO\textsubscript{2} content and one with constant CaO content but varying Al\textsubscript{2}O\textsubscript{3}/SiO\textsubscript{2} ratio. $C_{p,\text{conf}}$ is determined using differential scanning calorimetry (DSC), while m and T_g are determined through both DSC and direct viscosity measurements. The $C_{p,\text{conf}}$ model is found to generally predict the measured data well, but deviations between modelled and measured $C_{p,\text{conf}}$ values appear for the strongest glasses in the tectosilicate series and for the most peraluminous glasses in the constant CaO series. We discuss the origins of these model-data discrepancies based on the structural evolution in the glasses as determined through Raman spectroscopy measurements.

Keywords: calcium aluminosilicate glasses, configurational heat capacity, fragility, glass transition, network structure.