In-situ sol-gel synthesis of titanium dioxide-graphene oxide heterostructures for water purification technologies
Naknikham, Usuma; Boffa, Vittorio; Yue, Yuancheng

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: julii 26, 2017
Abstract Body: Titanium dioxide-graphene oxide (TiO2-GO) heterostructures presents superior photocatalytic properties, due to their efficient use of the solar light and to their ability to adsorb water pollutants. However, the synthesis of such heterostructures often involves tedious experimental steps, the reaction mechanisms of which are not well understood yet. In this context, we developed and optimized a synthetic path for the preparation of TiO2-GO heterostructures with large interphase and strong interaction between GO (or reduced GO) and TiO2. TiO2 nanoparticles were synthesized by in-situ sol-gel reaction. Synthetic conditions (pH and temperature) were optimized to enhance the interface interaction between TiO2 and GO. The new materials were characterized by XRD, SEM, and TEM analysis, besides the study of Ti-O-C interface bonding was carried out by XPS. In addition, the impact of the GO loading (0.01, 0.5, 1, 2, 5, and 10 wt.%) on the photocatalytic performances of TiO2 was studied with model pollutants. Lastly, band gap energy and UV-VIS diffuse reflection were conducted to observe the degree of TiO2-GO composites which works under the visible light.

KEYWORDS: TiO2-GO heterostructures, photocatalytic property, interface bonding.