On the biomechanical relationship between external hip, knee and ankle joint moments and the internal knee compressive forces

Jonas S. Stoltze, John Rasmussen and Michael S. Andersen
ISPO 16th World Congress, Cape Town, South Africa, May 11

Department of Mechanical, Production and Management Engineering, Aalborg University
E-mail: jss@make.aau.dk
Motivation – Knee Osteoarthritis (KOA)

- Inflammation
- Stiffness
- Pain

- >9.5 million EU KOA patients (Peat G. et al, 2001)
- Multi-factoral disease
 - Genetic
 - Previous ligament ruptures
 - Overloading

Non-invasive treatments of KOA

- Skin surface displacement
- MCL may be too stiff
- Shifts load but not reducing

Modified picture from (Pollo et al. 2002)
Investigate how internal knee joint loads depend on external moments
Hypothesis: Joint loads depend as much on muscle contraction as on KAM
Method

10 healthy subjects, 3 gait trials each (self-selected speed)
• Recorded with marker-based motion capture
• Measured ground reaction force

Skals et. al, 2016
Method

Apply external joint moments to simulate a brace *in-silico*

- **40%** compensation of muscle work \rightarrow Reducing joint load

Aalborg University, Denmark

Jonas S. Stoltze, John Rasmussen and Michael S. Andersen

On the biomechanical relationship between external hip, knee and ankle joint moments and the internal knee compressive forces
Apply external joint moments to simulate a brace *in-silico*

- **40%** compensating muscle work → Reducing joint load
Method

Example of knee flex-ext
Results – Total compression load

40% Muscle Compensation

Shaded area: ± 1 SD

<table>
<thead>
<tr>
<th>Normal</th>
<th>Hip Fle-Ext</th>
<th>Knee Fle-Ext</th>
<th>Ankle Plant-Dors</th>
</tr>
</thead>
</table>

Total Compressive Load [%BW]

% of Gait Cycle

Aalborg University, Denmark
Department of Material and Production Engineering

Jonas S. Stoltze, John Rasmussen and Michael S. Andersen
On the biomechanical relationship between external hip, knee and ankle joint moments and the internal knee compressive forces
Method – Combined load cases

Hip+Knee Hip+Ankle Knee+Ankle Hip+Knee+Ankle
Results – Total compression load

40% Muscle Compensation

Shaded area: ± 1 SD

Total Compressive Load [%BW]

% of Gait Cycle

No Ext, Hip+Knee, Hip+Ankle, Knee+Ankle, Hip+Knee+Ankle

Lateral, Medial

Jonas S. Stoltze, John Rasmussen and Michael S. Andersen
On the biomechanical relationship between external hip, knee and ankle joint moments and the internal knee compressive forces
Results – Medial condyle load

Shaded area: ± 1 SD

On the biomechanical relationship between external hip, knee and ankle joint moments and the internal knee compressive forces
Results – Lateral condyle load

Shaded area: ± 1 SD

Lateral Load [%BW]

% of Gait Cycle

No Ext
Hip+Knee
Hip+Ankle
Knee+Ankle
Hip+Knee+Ankle
Knee Var-Val

Aalborg University, Denmark

Jonas S. Stoltze, John Rasmussen and Michael S. Andersen
On the biomechanical relationship between external hip, knee and ankle joint moments and the internal knee compressive forces
Discussion and Conclusion

• Useful information for brace development

• Muscle contraction \rightarrow Joint compressive force
 – First peak: Knee and hip compensation
 – Second peak: Ankle compensation

• The external moment activation is a big challenge
 – Combine two moments

• Take home message:
 Muscle compensation might be a more efficient approach for joint load reduction
Acknowledgements:
- Sebastian Leigaard Skals for sharing models
- Innovation Fund Denmark for fundings

Contact details:
Jonas S. Stoltze
jss@make.aau.dk
Aalborg University