Chemical Durability and Crack Resistance of Alkali and Alkaline Earth Aluminoborate Glasses
Mascaraque Alvarez, Nerea; Januchta, Kacper; Frederiksen, Anne Kristine F.; Youngman, Randall E.; Bauchy, Mathieu; Smedskjær, Morten Mattrup

Publication date:
2017

Link to publication from Aalborg University

Citation for published version (APA):
Chemical Durability and Crack Resistance of Alkali and Alkaline Earth Aluminoborate Glasses

Nerea Mascaraque¹*, Kacper Januchta¹, Anne Kristine Fledelius Frederiksen¹, Randall E. Youngman², Mathieu Bauchy³, Morten M. Smedskjaer¹

¹Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
²Science and Technology Division, Corning Incorporated, Corning, USA
³Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA

Poster

Abstract

Aluminoborate glasses have recently been found to exhibit favourable mechanical properties, especially high crack resistance. However, a fundamental understanding of the composition dependence of crack initiation and growth is still lacking. Moreover, the expected low chemical durability of these glasses could be a limiting factor for their potential applications. We therefore here study the dissolution kinetics and crack resistance of a wide range of aluminoborate compositions: (1) 25Na₂O-xAl₂O₃-(75-x)B₂O₃ with x=5, 10, 15, 20, 25, 27.5, 30, (2) 25MgO-xAl₂O₃-(75-x)B₂O₃ with x=15, 20, 25, 30, (3) 25(M₂O or MO)-20Al₂O₃-55B₂O₃ where M is Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, and (4) (25-x)Li₂O-xBaO-20Al₂O₃-55B₂O₃ with x=0, 6.25, 12.5, 18.75, 20 (all in mol%). The structure and properties of the samples are characterized through Nuclear Magnetic Resonance (NMR), Raman Spectroscopy, Differential Scanning Calorimetry (DSC), micro-indentation, aqueous durability test and Atomic Absorption Spectroscopy (AAS). We demonstrate and discuss how the crack resistance and chemical durability are affected by the local chemical environment in the glasses.

Brief Biographical Notes

Nerea Mascaraque is PostDoc in the Department of Chemistry and Bioscience at Aalborg University, Denmark. She graduated from Faculty of Chemistry at Universidad Autónoma de Madrid (Spain) in 2009 and received her PhD degree in materials chemistry from the same university and Ceramic and Glass Institute (ICV-CSIC) under the supervision of Dr. Francisco Munoz and Prof. Alicia Durán in 2014. Her PhD project was focused on glassy materials as solid electrolytes in all solid-state batteries (7 journal articles). Her current research focuses on atomistic design of chemically durable glasses under the supervision of Prof. Morten M. Smedskjaer (2 journal articles).