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Abstract

Polynomial surrogates are used to characterize the energy production and lifetime
equivalent fatigue loads for different components of the DTU 10 MW reference wind
turbine under realistic atmospheric conditions. The variability caused by different
turbulent inflow fields are captured by creating independent surrogates for the mean
and standard deviation of each output with respect to the inflow realizations. A global
sensitivity analysis shows that the turbulent inflow realization has a bigger impact on
the total distribution of equivalent fatigue loads than the shear coefficient or yaw miss-
alignment. The methodology presented extends the deterministic power and thrust
coefficient curves to uncertainty models and adds new variables like damage equivalent
fatigue loads in different components of the turbine. These surrogate models can
then be implemented inside other work-flows such as: estimation of the uncertainty in
annual energy production due to wind resource variability and/or robust wind power
plant layout optimization. It can be concluded that it is possible to capture the global
behavior of a modern wind turbine and its uncertainty under realistic inflow conditions
using polynomial response surfaces. The surrogates are a way to obtain power and load
estimation under site specific characteristics without sharing the proprietary aeroelastic
design.

Keywords: Wind energy, uncertainty quantification, aeroelastic wind turbine model,
annual energy production, lifetime equivalent fatigue loads

1. Introduction1

The wind turbine design standard IEC 61400-1 [1] provides wind climate specifica-2

tions which are used as a reference for the structural design of the wind turbines. For3

achieving type certification of a new turbine model, the designer has to demonstrate4

that the structural capacity of the turbine is sufficient for withstanding the reference5

Preprint submitted to Renewable Energy July 15, 2017
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wind conditions over the entire lifetime of the turbine. Such a demonstration is nor-6

mally given by dynamic load simulations which characterize the behavior of the turbine7

under the reference wind conditions. Once certification is achieved, the given turbine8

model can safely be installed on sites where the wind conditions are identical or more9

benign than the reference standard conditions. However, in many occasions one or10

more of the parameters describing the site environmental conditions will be outside11

the ranges which are sufficiently covered by the IEC reference conditions. In such12

cases, it is necessary to estimate the actual loads which the turbine will experience13

over its entire lifetime, by considering the full joint distribution of the variables that14

describe the turbulent inflow. This is similar to a propagation of uncertainty prob-15

lem in which the distribution of the atmospheric conditions on the site needs to be16

propagated through the aeroelastic model of the turbine.17

If a full design load case setup similar to the IEC 61400-1 design cases is used for that18

purpose, the problem quickly becomes time-consuming as new dynamic simulations19

would be required for each site. As an example, the number of simulations required to20

predict within 1% error the lifetime equivalent fatigue loads on a floating wind turbine21

where the inflow conditions (sea/wind) are characterized by five stochastic variables22

can reach up to 3, 200, 000 = 205 using regular grid-based estimates or in the order23

of 50,000 using Monte-Carlo (MC) simulation [2]. An approach that alleviates these24

issues is mapping the turbine response to different environmental inputs by means of25

a fast and accurate surrogate model. Several techniques can be used to predict the26

behavior of the turbine from a limited set of model evaluations such as: interpolation27

techniques, response surface techniques [3], Gaussian process (Kriging) [4] and machine28

learning techniques [5, 6].29

Polynomial chaos expansion is a methodology used to efficiently propagate input30

uncertainties through a non-linear model. This methodology consists in building a31

polynomial response surface to capture the global dependency of the output as a func-32

tion of the uncertain inputs. PCE is widely used in the uncertainty quantification field33

because of its simplicity and fast convergence in comparison to a full MC simulation34

based on the original model [7, 8, 9, 10, 11]. Furthermore, adaptive PCE training al-35

gorithms can be used to obtain a sparse surrogate that minimizes the number of terms36

that have multiple variable dependency, making the surrogates extremely efficient re-37

sponse surfaces in multiple dimensions [12, 13, 14]. In the case of smooth continuous38

models with multiple input variables, sparse polynomial chaos expansion methodology39

is the most efficient technique to build the surrogates in terms of the number of model40

evaluations required, the number of input dimensions they can handle and the rate of41

convergence [12].42

One of the main difficulties in building a surrogate of an aeroelastic wind turbine43

model is the fact that the turbulent inflow realization (TIR, i.e. turbulent structures44

in the flow field) causes variations in the different wind turbine model outputs: such45

as power, thrust, fatigue and extreme loads in the different components of the tur-46

bine. This can be restated as: an aeroelastic wind turbine model has stochastic/non-47

deterministic outputs. Many studies have analyzed the difficulties of studying fatigue48
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and extreme loads under different turbulent inflow realizations [15, 16, 17, 4, 3]. Differ-49

ent TIR activate different dynamics of the structure and have different control system50

responses; therefore are an important source of uncertainty in the prediction of the51

outputs of the model [15]. The high variability in the model response to certain tur-52

bulent inflow structures has also been shown to be problematic when MC simulation53

was used to predict lifetime averages of fatigue loads on a floating wind turbine [2].54

1.1. Response to the problem55

The aim of the present study is to demonstrate a method for building a quick and56

accurate surrogate of a wind turbine model that predicts the turbine response as a57

function of multiple stochastic input variables that describe the turbulent inflow on58

a site (x). The surrogate for the turbine model is a set of two independent sparse59

polynomial response surfaces that allow to predict the variability caused by different60

input variable distributions and by different turbulent inflow field realizations (TIR).61

One response surface characterizes the expected output with respect to TIR: ŷE(x) ≈62

ETIR(y|x). The other one describes the standard deviation of the output with respect63

TIR: ŷS(x) ≈
√

VTIR(y|x); which is a model that predicts the uncertainty in the64

turbine response due to different turbulent structures hitting the turbine. Finally, a65

sample can be obtained from the normal distribution constructed using the mean and66

the standard deviation surrogates in order to make a prediction of the variability in67

the output at a given input point:68

ŷ(x) ∼ Normal(ŷE(x), ŷS(x)) (1)

The final surrogate ŷ(x) can then be used to obtain distributions of the wind turbine69

power and fatigue loads in a given year whose input parameters (wind, wind/sea, or70

wind/geological conditions) follow the distribution used to train the surrogate PDF(x).71

Since the surrogate is a response surface it can also be used to predict the distribution72

of the outputs when the input distributions is close but not exactly the distribution73

used for training the surrogate. This setup is considered a multi-leveled uncertainty74

propagation and it is the scenario that occurs when there is uncertainty in the param-75

eters that characterize the WS distribution for example. This approach is necessary to76

estimate the uncertainty in annual energy production and lifetime averaged equivalent77

fatigue load.78

1.2. Article overview79

A general overview of the PCE methodology in multiple dimensions is presented in80

section 2. This section describes the Rosenblatt transformation, the design of experi-81

ments used to define the training simulation points, the approach used to train sparse82

polynomial response surfaces and the logistic transformation used to limit the output.83

In section 3, the methodology is then applied to the response of the DTU 10 MW ref-84

erence wind turbine HAWC2 model [18] to turbulent inflow fields characterized by four85

input parameters. The four input parameters are the 10-min averaged hub height wind86
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speed (WS), the turbulent standard deviation of the instantaneous wind speed in the87

streamwise component (σ1), the shear exponent (α) and the yaw misalignment angle88

(γ). A study of how many independent realizations of the turbulent inflow field are89

required to achieve a certain error tolerance in the surrogate is presented in the section90

3.7. Finally in section 3.8, the surrogates are used in an example of prediction of the91

uncertainty in the annual energy production and the uncertainty in lifetime averaged92

equivalent fatigue loads.93

2. Methods94

This article proposes the use of two different variable transformations to simplify95

the polynomial response surface fitting problem, see figure 1. The first transforma-96

tion is the Rosenblatt transformation [19], which is used to de-correlate the set of97

D input variables x = (x0, x1, . . . xD−1) into a set of independent uniform variables,98

w = (w0, w1, . . . wD−1). The second transformation is a logistic transformation, and it99

is used to enforce constraints on the polynomial surrogates [20]. This transformation100

enables the use of polynomial surrogates in problems where the output has a minimum101

and/or maximum value. Without the logistic transformation the polynomial surrogates102

will present oscillations in the regions where the model has a constant output. The103

power production of a turbine is an example of a variable with a strict upper constraint104

corresponding to the rated power.105

15 DTU Wind Energy J. P. Murcia - jumu@dtu.dk Uncertainty quantification for Wind Energy 24.5.2016

Correlated
inputs

PDF(x)
Rosenblatt

transformation

Uniform
independent

PDF(w)

PCE
z = M̂(w)

Overlimited
outputs
PDF(z)

Logistic
transformation

Correlated
outputs
PDF(y)

Figure 1: Transformation of variables to build efficient polynomial response surface.

2.1. 1D PCE theory106

Consider a model with a single uncertain input (x) and a single output (y). PCE107

consists of defining a polynomial family that is orthogonal with respect to the input108

distribution, PDF(x). Orthogonal polynomial families with respect to the most im-109

portant distributions are well known, see table 1. For details on how to define new110

polynomial basis to an arbitrary input distributions refer to Gautschi et al [21].111

Distribution Polynomial Family
Uniform Legendre
Normal Hermite
Exponential Laguerre

Table 1: Classical orthogonal polynomial families.

The orthogonal polynomials are used to build a polynomial approximation of the112

output, i.e. a polynomial response surface, see equation 2. Where, φl(x) is the l113
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order orthogonal polynomial, cl is its correspondent coefficient and M represents the114

truncation order of the PCE.115

y(x) ≈ ŷ(x) =
M∑
l=0

cl φl(x) (2)

There are two different approaches to determine the cl coefficients:116

Semi-Spectral projection consists in using quadrature rules to approximate the in-117

ner product definition of the coefficient, see equation 3. Many quadrature rules exist118

to approximate the integrals; but all quadrature rules give Nn nodes for model evalu-119

ation (xi) and their corresponding weights (ωi). Gaussian quadrature rules are widely120

used because they are accurate for smooth function integration with respect a weight121

function, in this case the PDF(x), see equation 3.122

cl = 〈y, φl〉 ≡
∫
y(x)φl(x) PDF(x) dx ≈

Nn∑
i=0

ωi y(xi)φl(xi) (3)

In general, semi-spectral projection is an efficient method for low number of input123

dimensions, but the number of model evaluations required grows exponentially with124

the number of dimensions. Additionally, quadrature rules can be unstable for heavy125

tailed PDFs such as the Weibull distribution [21].126

Point collocation consists in fitting the polynomial basis to a small sample of model127

evaluations. Traditionally, this fit can be done using least squares algorithm, but some128

other optimization algorithms can be used to obtain PCE approximations that mini-129

mize the number of terms in the surrogate [12, 13, 14]. This techniques are explained in130

the section 2.5. In general, point collocation is robust and the advanced optimization131

algorithms are designed to handle large number of dimensions, to avoid over-fitting132

and to achieve sparsity in the final surrogate. The present study focuses only in the133

point collocation techniques since the number of model evaluations required to fit a134

multiple dimensional PCE is smaller [12] than in other methods.135

2.2. Rosenblatt transformation136

To build the PCE of a model with multiple correlated inputs (x), it is required to137

initially transform the correlated input space into an uncorrelated space (w = R−1(x)).138

In this article, the Rosenblatt transformation is used because the input distribution of139

the turbulent inflow field parameters are usually defined in a sequence of conditional140

relationships [19]. Refer to Dimitrov et al [22] and Graf et al [2] for examples of141

such distributions used for offshore and floating wind turbine fatigue and extreme load142

analysis.143

Since all the variables are transformed into uncorrelated unitary uniform variables144

then the PCE only requires the use of the Legendre polynomials: y(x) = y(R(w)) ≈145

ŷ(w).146
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2.3. Multi-dimensional PCE147

A D-dimensional polynomial is constructed as the sum of the product between148

individual one dimensional polynomials for each of the D uniform input variables,149

w = [w0, . . . , wD−1]. The D-dimensional surrogate is written using a set of multiple150

indexes I ⊂ ND. An element J ∈ I contains the order of the polynomial in each151

dimension: J = [l0, . . . , lD−1]. Additionally, the multiple indexes are enumerated,152

J ↔ j ∈ N. A surrogate that contains Nc terms can be written as:153

y(x) = y(R(w)) ≈
Nc−1∑
j=0

cj φj(w) (4)

where an element in the multidimensional polynomial basis is given as:154

φj(w) = φl0(w0)× · · · × φlD−1
(wD−1) (5)

2.4. Training point selection155

The Rosenblatt transformation enables the use of multiple variance reduction MC156

sampling techniques to define the training points of a surrogate [23]. Latin hypercube157

sampling [24], Sobol sequence [25] and Hammersley sequence [26] are some examples of158

such techniques. These techniques are designed to sample from the unitary hypercube159

of D dimensions, i.e. the uniform distributed variables: wi ∼ PDF(w). Finally, the160

Rosenblatt transformation is used to transform each realization in the uniform sample161

into the correlated input space, xi = R(wi) ∼ PDF(x).162

The number of unknown coefficients cj in a D-dimensional PCE depends of the163

total polynomial order of the PCE. The total order is defined as the maximum sum164

of the one dimensional orders. If the PCE is truncated to a total order M then the165

number of unknown coefficients is given by the following combination:166

Nc =

(
M +D

M

)
=

(M +D)!

M !D!
(6)

The number of model evaluations should be between 2 or 3 times the number of167

unknowns in order to have extra data to test the accuracy of the surrogate and to168

implement strategies to avoid over-fitting [12]. Note that the maximum order is only169

used to estimate the number of model evaluations. Advanced regression techniques170

allow to explore higher order terms [14, 12]. The maximum order M can be increased171

in order to achieve higher accuracy surrogates but at the cost of having more model172

evaluations and the requirement of assuring that there is no over-fitting.173

2.5. Point collocation and the LASSO problem174

The least absolute shrinkage and selection operator (LASSO) problem is a modified175

least squares optimization problem that adds a term that penalizes the amount of active176

terms in the surrogate (terms with non zero coefficients). LASSO is used to achieve177

sparsity and to avoid over fitting in the polynomial surrogate. Additionally, the number178

6
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of model evaluations required for solving the LASSO problem is smaller in comparison179

to a least squares regression that has the same maximum total polynomial order [12].180

A LASSO problem can be described as finding the set of coefficients cj that mini-181

mizes the sum of squared errors plus the sum of the absolute values of all coefficients182

(`1 norm regularization term) [14]:183

min
cj

N−1∑
i=0

[
Nc−1∑
j=0

cjφj(wi)− y(xi)

]2
+ α

Nc−1∑
j=0

|cj| (7)

where the number of model/surrogate evaluation points N is fixed. Note that the184

input and surrogate evaluation points are related by the Rosenblatt transformation185

xi = R(wi). The maximum number of possible terms of the surrogate Nc is fixed by186

selecting a maximum total multi-dimensional polynomial order.187

The regularization coefficient α controls the amount of active terms in the final188

solution. Smaller values allow to have more active terms while larger values will prefer189

final surrogates with few active terms. A sparse surrogate has the advantage of making190

the evaluation of the multi-dimensional surrogate faster in comparison to the full least191

squares solution; this advantage becomes critical in high number of input dimensions.192

There are two algorithms widely used to solve the LASSO problem: coordinate193

descent [14] and least angle regression (LAR) [12]. Coordinate decent is used in the194

present work because it tends to be more stable for high dimensional problems [13]. The195

reason for this is that coordinate descent operates on a given regularization coefficient196

instead of exploring the full space of α’s as in LAR algorithm.197

Cross-validation is used to select the regularization coefficient α that minimizes198

over fitting of the data. A k-fold cross-validation consists in splitting the dataset into199

k groups of data. All the points in k-1 groups are used for training and the remaining200

group is used for cross-validation. This means that the surrogate fitted using k-1201

groups is used to predict the output in each of the elements of the remaining group.202

The mean squared error of the prediction of the surrogate is then computed. This203

process is repeated leaving out each individual fold and for multiple regularization204

parameters. The regularization parameter that gives the lowest mean cross-validation205

mean squared errors is then selected to train the whole dataset. This translates as206

selecting the sparse model that performs the best by predicting missing data, i.e. that207

has less over-fitting.208

2.6. Logistic transformation209

A logistic transformation is applied to an output of the model in order to avoid210

oscillations in the regions where the model is constant. In practice this transformation211

is used to impose strict restrictions on the polynomial surrogates. The transformation212

consists in applying the logit function, L(p) = ln
(

p
1−p

)
, to the model output at the213

training points yi = y(xi) into the over-shooting variable space: zi = L(a1 yi + a0)214

[20]. Finally, each time the surrogate is evaluated, the prediction of the surrogate is215

7
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transformed back to the original output space ŷ = (L−1(ẑ)− a0)/a1. The constants of216

the transformation are calibrated in order to impose the constraints of the output and217

to avoid numerical instabilities that are inherent to the logit function.218

2.7. Global sensitivity analysis219

Global sensitivity analysis (SA) is a methodology to determine how important each220

input is to explain the variance of the output. SA can be obtained with a Sobol variance221

decomposition [27]. In this technique, the variance of the output is explained into the222

different terms of variance of each of the inputs, in a process similar to the analysis223

of the variance of experiments (ANOVA) [28]. Total effect Sobol indices are widely224

used as measures of how much of the variance of a given output is explained by the225

variance of an input, including possible interactions with other variables. This method226

is the most recognized method for global sensitivity analysis because it accounts for227

non-linear dependencies and for interactions between variables [29].228

Variance decomposition can be expressed as the sum of the variance of the marginal229

expected value of a subset of input variables, see equation 8. Note that this decom-230

position is not an infinite series expansion, it is truncated to the maximum number of231

variable interactions.232

V(y) =
D−1∑
k=0

Vk +
D−1∑
k=0

D−1∑
l>k

Vkl +
D−1∑
k=0

D−1∑
l>k

D−1∑
m>l

Vklm + · · ·+ V0...D−1

Vk = V (E∀n6=k (M(x|xk)))
Vkl = V (E∀n6=k,l (M(x|xk, xl)))

Vklm = V (E∀n6=k,l,m (M(x|xk, xl, xm)))

(8)

The global sensitivity measure is defined by normalizing eq. 8 with the total vari-233

ance of the output V(y). From this normalization one can define the Sobol index of a234

given degree of interaction between input variables as:235

Sk =
Vk

V(y)
Skl =

Vkl

V(y)
Sklm =

Vklm

V(y)
. . . (9)

The total effect Sobol index of an input variable xi is then the sum of all the Sobol236

indices that include the variable in any interaction:237

Stotalxi = Si +
D−1∑
k=0
k 6=i

Sik + . . . (10)

The sensitivity analysis of the response of the turbine should consider the effect238

of having different turbulent inflow realizations which is modeled with the two inde-239

pendent polynomial response surfaces for the local mean and local standard deviation.240

The Sobol indexes are not computed directly from the PCE coefficients as for classi-241

cal problems, see Sudret et al [30], because the Logistic transformation removes the242
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stochastic properties of the PCE and because the coefficients of the local mean sur-243

rogate would not include the effect of the turbulence inflow realization. To solve this244

limitation, the approximate method proposed in Saltelli et. al [29] is used to compute245

the total effect Sobol indexes. This approach estimates the total effect Sobol indexes246

from a large MC simulation.247

3. Results248

3.1. Implementation249

Several open source implementations of PCE methods are available such as: Chaospy250

[23], Dakota [31], UQLab [32] and OpenTurns [33]. In the present work we use Chaospy251

because of its implementation of the Rosenblatt transformation. Additionally, the252

present work uses the LASSO problem solvers [14] and the cross-validation capabilities253

available in the open source library Scikit-learn [13]. These capabilities are used in-254

side of Chaospy for general users and are used externally in the present study to gain255

control over the different stages of the cross-validation.256

3.2. Case description257

The model consists of the DTU 10 MW reference wind turbine HAWC2 model258

[34, 18] with Mann turbulent inflow generation [35]. The turbulent inflow conditions259

are defined using the four variables described in table 2.260

Input Variable Distribution Parameters

10-min mean hub height x0 = WS Rayleigh E(WS) = 10 m/s
wind speed

Std. of the inst. wind speed
in the streamwise direction x1 = σ1 Lognormal µσ1(WS) σσ1(WS)
during the 10-min simulation

10-min mean shear exponent x2 = α Normal µα(WS) σα(WS)

10-min mean yaw miss-align. x3 = γ Normal µγ = 0 σγ = 5 deg.

Table 2: Wind turbine model inputs.

The dependency between WS and σ1 is defined in the Normal Turbulence Model261

described in the IEC 61400-1 [1]. The present case uses a reference ambient turbulence262

intensity of a site Class 1A: TIref = 0.16. This dependency is given by the local statis-263

tical moments of σ1 as: E(σ1|WS) = TIref (0.75WS + 3.8) and V(σ1|WS) = (1.4 TIref)
2.264

The parameters of the σ1 distribution are given in equation 11 as functions of WS.265

σσ1 =

(
ln

(
V(σ1|WS)

E2(σ1|WS)
+ 1

))1/2

=

(
ln

(
1.42

(0.75WS + 3.8)2
+ 1

))1/2

µσ1 = ln (E(σ1|WS))− σ2
σ1

2
= ln (TIref (0.75WS + 3.8))− σ2

σ1

2

(11)

9
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The correlation between α and WS is based on the simplified joint distribution266

defined by Dimitrov et al [22]:267

µα = 0.088(ln(WS)− 1)

σα = 1/WS
(12)

Seven different model outputs are considered (y), see table 3. The damage equiva-268

lent fatigue loads (EFL) are computed using a rainflow counting algorithm to determine269

the number of load cycles ni with their corresponding load range Si in the 10-min time270

series of turbine response. The EFL is then obtained using different materials’ Wöhler271

exponent m, see equation 13 [36]. For obtaining 1Hz-equivalent fatigue loads based on272

10 minute reference periods, the reference number of load cycles used is Nref = 600.273

Seq =

(∑
niS

m
i

Nref

) 1
m

(13)

Output m Variable
10 minute mean power production - P
10 minute mean thrust coefficient - CT
EFL blade root flapwise bending moment 12 BRF
EFL tower bottom fore-aft bending moment 4 TBF
EFL tower bottom sidewise bending moment 4 TBS
EFL tower top tilt bending moment 4 TTT
EFL tower top yaw bending moment 4 TTY

Table 3: Wind turbine model outputs.

3.3. Training points274

In this study, the number of model evaluations are set to be N = 2Nc, the max-275

imum order of the polynomial is expected to be M = 4 and the number of input276

variables is D = 4. This leads to 140 total number of model evaluations, i.e. 140 input277

variables locations for which HAWC2 model is executed, see equation 6. A Hammer-278

sley sequence [26] is preferred over other variance reduction methods to generate the279

training sample in the uniform space as it is a sequence that can be extended to contain280

larger sample size without changing the previous points [23, 37]. The uniform sample281

is then transformed into the physical variables using the Rossenblat transformation. A282

similar approach is used to generate the input sample for a MC simulation on either283

the real model or the surrogate models; the size of the MC sample is taken to be 80000.284

The training input sample is shown in figure 2 as well as a the inputs sample for the285

MC simulation. figure 2 is a representation of the multidimensional PDF(x): the his-286

tograms represent the marginal distributions for each variable, while the plots in the287

lower diagonal represent the training points and bi-dimensional histograms of the MC288

sample. The figures in the lower diagonal show the correlations between each pairs of289

variables as well as the iso-pdf quantiles that enclose 68%, 95% and 99.7% of the data.290
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It can be observed that the training points are more densely distributed in the regions291

of higher probability of the inputs. This means that the surrogate is better trained292

in the most likely region of the input space. For applications where the quantity of293

interest is the tail of the output distribution, such as ultimate load estimation, the294

training dataset could be distributed uniformly over the region encircled by a given295

iso-pdf quantile of the inputs, see iso-PDF contours in figure 2. 100 different turbulent296

inflow realizations are generated using the Mann model for each input point, for which297

the mean and standard deviation of the outputs are obtained. This number is selected298

to test the accuracy of the prediction of the surrogates when they are trained using a299

reduced number of TIR as it is defined in the design load cases defined in the standard300

[1]. The full training sample consists of 140× 100 HAWC2 10 minutes simulations.301

Figure 2: (Black points) Training dataset in the inputs: 140 Hammersley sequence sample of input
joint distribution. (Histogram colored hex-bins) 80000 Hammersley sequence MC sample. (Contour
lines) Iso-PDF lines that encircle 68%, 95% and 99.7% of the MC sample.

3.4. Example of PCE surrogates for individual statistical moments302

Some examples of the distribution of yE and yS
1 are shown in figure 3. In this303

figure the black points represent the observed statistic of the output for the training304

1PS represents the standard deviation of 100 different realizations of the 10-min averaged power;
this variable should not be confused with the standard deviation of the instantaneous power during
the 10 minutes of simulation.
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points; while the bi-dimensional histogram represents the obtained distribution of the305

surrogate for a 80000 MC sample. The observed histogram in the training dataset and306

the PDF predicted by the surrogate for yE and yS are shown in the last column in307

figure 3. It can be observed that the surrogates accurately capture the global PDF of308

the model and its dependency with respect to the 4 input variables. The surrogates of309

the local standard deviations, ŷS, are not able to capture the behavior of some extreme310

cases, see the extreme points at low wind speeds in the plots for CTS and BRFS. These311

errors are small in comparison to the overall magnitude of the output; the distribution312

of the errors of the surrogates and its impact in the final prediction are quantified in313

section 3.7. These errors can be reduced up to a tolerance level selected by the user314

by adding more training points (input points with their turbulent inflow realizations).315

The surrogates are robust enough to predict the frequency of occurrence of extreme316

values such as the outputs resulting from the input point with largest σ1, see first and317

third row in figure 3. This point seems to be outside the main trend in WS in figure 3318

because it has a large σ1 and α given its WS, see figure 2.319

3.5. Final surrogate predictions320

The surrogates of yE and yS are combined to estimate the distribution of each indi-321

vidual output of the DTU 10 MW RWT. The prediction is done by sampling the normal322

distribution constructed using the surrogates of yE and yS, see equation 1. These re-323

sults are presented in figure 4 along with the full dataset of HAWC2 simulations. In324

this figure each cross represents an individual 10-min simulation, therefore the scatter325

of nearby simulations illustrates the stochasticity in the output of the aeroelastic sim-326

ulation. The amount of local output variability due to the turbulent inflow realization327

varies between outputs and depends on the region of the input space. The effect of the328

turbulent inflow realization is more important for the fatigue loads than for power and329

thrust coefficient. figure 4 also presents the bi-dimensional histogram obtained with330

a 80000 MC simulation of the surrogate. The distribution predicted by the surrogate331

captures the dependency and variability of each output with respect to the four input332

variables; the iso-PDF quantiles that encircle the 68%, 95% and 99.7% of the MC333

sample are also shown in figure 4 and they give a visual estimation of how likely are334

the observations of the output. It can be observed that the surrogate estimates the335

regions that contribute more on the lifetime fatigue and even gives an estimation of336

the input region on which the largest damage is to be expected. Additionally the MC337

simulation on the surrogate gives an estimation of the PDF for each variable, see fifth338

column in figure 4.339

The obtained distribution of power shows a similar behaviour to the operational340

data of wind turbines; this shows that one of the main drivers for variability in the341

prediction of power below rated is the TIR. Similarly, the thrust coefficient shows large342

variability for wind speeds below rated; this large variability can become important343

for wake models that use the thrust coefficient to predict the strength of the wake of a344

turbine and its impact on other turbines in a wind farm. The fatigue load blade root345

and tower top bending moments (BRF, TTT and TTY) show similar dependency on346
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Figure 3: Example of surrogates for mean and std of the output with respect TIR. (Black points) 140
training points. (Histogram colored hex-bins) 80000 MC simulation on the surrogate. (Contour lines)
Iso-PDF lines that encircle 68%, 95% and 99.7% of the MC simulation on the surrogate.

the four input variables and a similar amount of variability due to TIR; this is because347

they are all driven by the streamwise flow field. The fatigue loads tower bottom bending348

moments (TBF and TBS) show a different dependency on the input variables, mainly349

because they are driven by the thrust and sidewise forces; these two outputs have larger350

variability at lower WS which generates both the largest and lowest observations.351

3.6. Sensitivity analysis352

The global sensitivity analysis (SA) for the outputs are presented in table 4. The353

total effect Sobol indexes are computed using the approximation presented by Saltelli354

et al [29]. The total effect Sobol index represents the non-linear influence of the input355
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Figure 4: (Black crosses) 10-min HAWC2 simulation for the 140 input sample x 100 turbulent inflow
realizations. (Histogram colored hex-bins) 80000 MC simulation of the surrogate. (Contour lines)
Iso-PDF lines that encircle 68%, 95% and 99.7% of the MC simulation on the surrogate.
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variable in the total variance of the output. Most of the outputs have a large total356

Sobol index for the wind speed. WS is clearly the main variable to explain the power357

and loads in a wind turbine. The SA shows that the power and thrust coefficient can358

be explained almost fully by the WS, since all the terms in the surrogate have WS359

dependency.360

The variance introduced by the turbulent inflow realization is an important com-361

ponent for all the outputs, it has a higher influence than σ1 for most outputs. This362

counter intuitive result is due to the large amount of correlation between WS and σ1;363

thus a large fraction of the variance of the output generated by σ1 is already explained364

by WS. The shear and yaw have reduced effects over most output variables. The365

yaw misalignment has reduced total effect because its assumed distribution is centered366

around zero. The shear exponent becomes important only for capturing the fatigue at367

the tower top tilt and yaw bending moments (TTT, TTY); while the yaw misalign-368

ment becomes important for modeling the fatigue at the tower bottom fore-aft moment369

(TBF).370

WS σ1 α γ TIR

P 1.0 2.4× 10−4 3.1× 10−4 8.1× 10−5 3.1× 10−3

1st 4th 3rd 5th 2nd

CT 9.9× 10−1 1.2× 10−3 1.3× 10−3 6.5× 10−4 9.8× 10−3

1st 3rd 4th 5th 2nd

BRF 8.8× 10−1 5.6× 10−2 1.5× 10−2 3.4× 10−3 6.7× 10−2

1st 3rd 4th 5th 2nd

TBF 5.9× 10−1 2.1× 10−1 3.6× 10−4 1.0× 10−3 3.0× 10−1

1st 3rd 5th 4th 2nd

TBS 7.1× 10−1 7.6× 10−2 2.1× 10−3 2.3× 10−4 3.0× 10−1

1st 3rd 5th 4th 2nd

TTT 8.7× 10−1 7.1× 10−2 3.3× 10−4 5.7× 10−4 7.7× 10−2

1st 3rd 5th 4th 2nd

TTY 8.7× 10−1 6.8× 10−2 2.2× 10−4 9.6× 10−4 7.2× 10−2

1st 3rd 5th 4th 2nd

Table 4: Total influence Sobol index.

The sensitivity analysis conditioned on WS for the outputs are presented in table 5.371

It can be observed that for power and thrust coefficient the influence of TIR goes from372

being the main source of variability at WS below rated to become the least important373

for WS above rated; this result summarizes the influence of the pitch controller enforc-374

ing the power and limiting the thrust. The effect of TIR in the fatigue loads is more375

uniform through all the ranges of operation. Similarly to the global SA , the main376

variables required to explain the equivalent fatigue loads are TIR and σ1. This is also377

true for the power and thrust coefficient for WS bellow rated.378

3.7. Convergence379

A leave-one-out cross-validation (LOO) is done to estimate the distribution of the380

prediction error of each surrogate as a function of the number of independent turbulent381

seeds per input points used in the surrogate training. A LOO is a cross validation382

in which the surrogate is trained leaving one point out. Then, the local statistical383
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WS=8 ms−1 WS=12 ms−1 WS=16 ms−1

σ1 α γ TIR σ1 α γ TIR σ1 α γ TIR

P 1.1× 10−1 1.4× 10−1 2.8× 10−2 7.9× 10−1 7.8× 10−2 3.7× 10−2 2.5× 10−2 9.8× 10−1 3.0 1.6 3.7 9.7× 10−1

3rd 2nd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 1st 4th

CT 5.1× 10−2 1.1× 10−1 3.7× 10−2 8.6× 10−1 2.4× 10−1 2.1× 10−1 1.5× 10−1 6.4× 10−1 6.1× 10−1 4.3× 10−1 3.3× 10−1 2.0× 10−1

3rd 2nd 4th 1st 2nd 3rd 4th 1st 1st 2nd 3th 4th

BRF 4.8× 10−1 3.3× 10−2 1.1× 10−2 5.0× 10−1 3.9× 10−1 1.0× 10−1 9.2× 10−3 5.1× 10−1 3.5× 10−1 1.8× 10−1 2.7× 10−2 4.6× 10−1

2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st

TBF 3.7× 10−1 4.6× 10−4 1.9× 10−3 6.5× 10−1 5.6× 10−1 2.1× 10−3 1.9× 10−3 4.5× 10−1 5.2× 10−1 3.6× 10−3 4.0× 10−3 4.8× 10−1

2nd 4th 3rd 1st 1st 3rd 4th 2nd 1st 4th 3rd 2nd

TBS 1.9× 10−1 3.2× 10−3 6.8× 10−4 8.3× 10−1 2.4× 10−1 8.7× 10−4 1.7× 10−3 7.8× 10−1 2.2× 10−1 1.4× 10−3 1.5× 10−3 7.9× 10−1

2nd 3rd 4th 1st 2nd 4th 3rd 1st 2nd 4th 3rd 1st

TTT 5.6× 10−1 2.2× 10−3 4.0× 10−3 4.5× 10−1 4.6× 10−1 1.3× 10−3 3.6× 10−3 5.5× 10−1 4.6× 10−1 2.5× 10−3 3.5× 10−3 5.4× 10−1

1st 3rd 4th 2nd 2nd 4th 3rd 1st 2nd 4th 3rd 1st

TTY 5.3× 10−1 1.9× 10−3 1.9× 10−3 4.8× 10−1 4.6× 10−1 5.6× 10−4 4.5× 10−3 5.5× 10−1 4.7× 10−1 1.7× 10−3 1.2× 10−2 5.3× 10−1

1st 3rd 4th 2nd 2nd 4th 3rd 1st 2nd 4th 3rd 1st

Table 5: Total influence Sobol index at different WS.

moments of the output predicted by the surrogates at the missing point are compared384

against the statistics computed using the surrogate. In this article, the prediction385

errors are normalized with respect to the maximum scale of the output variable, which386

means that the errors represent the fraction of the total scale that should be considered387

as an extra uncertainty due to the inadequacy of the surrogate. The prediction error388

for the local surrogates are defined as:389

εy E =
yE(xLO)− ŷE(xLO)

max(y)

εy S =
yS(xLO)− ŷS(xLO)

max(y)

(14)

The convergence of the prediction error of the statistical moments is shown in figure390

5. It can be seen that all the prediction errors tend to be distributed around zero and391

their standard deviations converge as the number of turbulent inflow realizations per392

input are increased. The errors converge to the distribution of the errors to the current393

surrogate. New input points need to be added to the training data set in order to further394

narrow the converged distribution of surrogate errors. In this figure the outliers are the395

extreme cases of selecting seeds with similar outputs, therefore, they are those cases396

that have large errors in the statistical moments. Finally, the converged distribution397

can be used to estimate the uncertainty in the final prediction of the output as:398

ŷ(x) ∼ Normal(ŷE(x) + εy Emax(y), ŷS(x) + εy Smax(y)) (15)

where the errors of the surrogates can be sampled from the distribution predicted using399

LOO cross validation, see figure 5:400

εy E ∼ Normal(E(εy E),S(εy E)) εy S ∼ Normal(E(εy S), S(εy S)) (16)
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Figure 5: Convergence of the LOO cross-validation prediction error as a function of the number of
turbulent seeds per input point used in PCE training. (Pink area) One standard deviation confidence
interval around the mean E(ε)± S(ε).

3.8. Example of using the surrogates for the estimation of the uncertainty in annual401

energy production and lifetime equivalent fatigue loads402

This section presents an example to illustrate the use of the surrogates of the403

DTU 10 MW RWT to estimate the uncertainty in the distribution of expected energy404

production and of equivalent fatigue loads Ex(y) in a given period; here the averaging405

period is either 1 year or 20 years. In this example a single turbine is planned to operate406

in a location from which the uncertainty in the wind resources has been estimated407

before hand. This uncertainty can represent the year-to-year variability, the effect of408

the long-term correction, uncertainty in the wind resources assessment tool, among409
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other sources of uncertainty. The propagation of uncertainty is done in two steps as410

described in figure 6. The inner level predicts the distribution of the turbine outputs411

PDF(y) given a joint distribution of the turbulent inflow parameters PDF(x); the412

inner level returns the expected value of the output to the outer level. In the outer413

level the uncertainty in the resources is propagated through the inner level to estimate414

the uncertainty of the expected value of each output.415

Surrogate
M̂(x)

�1

WS

↵

�

x y

A

k

AEP and Lifetime EFL Model

Uncertainty in 
the wind resources

Joint distribution
PDF(x)

Joint distribution Uncertainty in 
AEP andPDF(y)

Ex(y)

Ex(y)

Figure 6: 2 levels of propagation of uncertainty.

The distribution of the variability of the wind resources is presented in table 6. The416

main difference with the distribution used for training the surrogates is the fact that the417

WS follows a Weibull distribution with uncertain shape and scale parameters. This dis-418

tribution of the Weibull parameters is used to characterize the variability/uncertainty419

in the wind resources. Nevertheless, the conditional distributions of σ1, α and γ with420

respect WS follow the same dependency described in table 2.421

Variable Distribution Parameters

A Normal µA = 9 σA = 0.5 m/s

k Normal µk = 2 σk = 0.1

x0 = WS Weibull scale= A shape= k

x1 = σ1 Lognormal µσ1(WS) σσ1(WS)

x2 = α Normal µα(WS) σα(WS)

x3 = γ Normal µγ = 0 σγ = 5 deg.

Table 6: Uncertainty in wind resources.
Figure 7: Joint distribution of the Weibull param-
eters and semi-spectral projection nodes for outer
level propagation of uncertainty.

The propagation of uncertainty in the outer level is done using both a 1000 MC422

sample and a PCE with semi-spectral projection, for which a total of 25 Weibull pa-423

rameters nodes are evaluated with their corresponding Gaussian quadrature weights,424

see figure 7 and equation 3. Each node or element of the outer level MC sample rep-425

resents a realization of the wind resources in a given year. For each of these nodes,426

a large inner level sample of the inputs of the surrogate, x = [WS, σ1, α, γ], is gener-427

ated. The size of the inner level MC sample is the number of 10-min cases in a year,428

365 × 24 × 6 = 52, 560 cases. The power and EFL are evaluated using the surrogate429

and the mean power and mean EFL for a given year are calculated Ex(y). Note that430
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the definition of the lifetime damage equivalent fatigue load (see eq. 13) requires to431

take the average of the individual 10-min EFL to the Wöhler exponent, which trans-432

lates in taking a higher order statistical moment: Ex(ym). Each individual surrogate433

evaluation has its own realization of the local distribution of the outputs due to the434

turbulence inflow realization, see equation 1. Additionally, the effect of the errors of435

the surrogate are considered, by sampling the distribution of the errors for each eval-436

uation of the outputs, see equation 15. There are no differences in the distributions of437

Ex(y) obtained using the surrogate or the ones obtained including the uncertainty of438

the surrogate due to the large sample size of the inner level (52, 560); this means that439

the errors of the surrogate cancel out when computing their mean on a given year.440

A 1000 MC sample of the distribution of one year Ex(y) is generated using the441

PCE of the outer level in order to have an equivalent database of 1000 years as the one442

obtained in the outer MC simulation. A bootstrap of the outer level sample is used to443

estimate the variation in the expected value during 20 years of operation. This means444

that the average of 20 randomly selected years is computed for several realizations of445

20 years. The central limit theorem is also used to estimate the distribution of the446

average of 20 randomly selected (independent) years. The distributions of the 1 year447

and 20 years capacity factor and of lifetime equivalent fatigue loads are presented in448

figure 8. It can be observed how the 20-year-averaged distribution has a narrower449

distribution, σ20yr = σ1yr/
√

20. Note that the yearly distribution of average output is450

required in order to estimate the uncertainty in the 20-year-averaged output. In this451

example coefficient of variations (CoV = σ/µ) of 5.6% for the scale parameter (A) and452

5.0% for the shape parameter (k) of the WS Weibull distribution give a coefficient of453

variation of 2.4% in AEP and a 9.5% in year-to-year expected power production. The454

coefficient of variation in the 20-year damage equivalent BRF is 8.0% while the CoV of455

the year-to-year damage equivalent BRF is 35.0%. The CoV for the TBF are 1.0% for456

the 20-year damage equivalent load and 4.0% for the year-to-year variation. Note that457

this coefficients of variations will be modified if the correlation between the WS and the458

other turbulent inflow parameters changes from year to year. It is important to realize459

that the distribution for the year-year equivalent damage BRF is skewed due to the460

large Wöhler exponent of the composite blades used in this study (12). Nevertheless,461

the lifetime equivalent damage BRF converges to a Normal distribution which can be462

estimated from the mean and variance of the PCE of the yearly distribution.463

4. Discussion464

The present article presents a methodology to implement sparse polynomial sur-465

rogates for aeroelastic wind turbine models. PCE are widely used in the uncertainty466

quantification field due to their efficiency to compute the statistical properties of the467

output and because the sensitivity analysis is obtained without any additional effort.468

The main two limitations in the use of PCE for wind energy are: (1) The input at-469

mospheric parameters are usually jointly distributed with several layers of dependency470

(2) Some of the output have discontinuities and/or are restricted to certain values (e.g.471
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Figure 8: Distribution of the capacity factor and of the expected BRF and TBF equivalent loads.
(Red) Normal distribution with the mean and variance predicted with the PCE distribution of the 1
year expected output. (Orange) 1000 MC sample of the 1 year expected output. (Black) Central limit
distribution of 20-year-averaged output. (Purple) 1000 Bootstraps of the 20-year-averaged output.

only positive). The present article has shown how to solve these two problems: the im-472

plementation of an iso-probabilistic transformation to de-correlate the inputs, and the473

use of a logistic transformation to implement restrictions on the outputs. The benefits474

of using the logistic transformation can be seen in figure 3, note that the polynomial475

surrogates do not present oscillations in the constant regions.476

The final surrogate can be used to generate an output sample that covers the full477

output space, and that will predict the general details of the distributions of the out-478

puts. One of the main limitations of the present surrogates is that the local distribution479

of the output is assumed to be normal, this is not the case for the operating region480

close to rated wind speed. Since this assumption only affects the turbulent inflow real-481

ization, it is considered to be an acceptable approximation. The local distributions of482

most outputs are not normal in reality, because the wind turbine controller has different483

strategies in each operating region, which creates skewness in the local distributions.484

The results presented in this article show that there are multiple dependencies be-485

tween the input variables as well as between inputs and outputs. Such complicated486

inter-dependencies are difficult to capture when applying other methods such as inter-487

polation or Gaussian processes. For example, advanced interpolation methods such as488

radial basis functions will not account for the likelihood of an extreme training point489

and will generate trends that always pass through all the model observations. This be-490

havior penalizes the capacity of the surrogate to generalize and to predict the output in491

new conditions. The sparse PCE are ideal for this class of problems because the k-fold492

cross validation is a step inside the training. Additionally, the correlations between the493

outputs are fully captured when using the presented surrogates; this occurs because494

each of the outputs has a dependency on the inputs. The full pair plot of the training495

dataset and the resulting surrogate for all inputs and outputs is presented in the extra496

material accompanying this article.497

The final results presented in figures 4 and 8 show a promising new approach to498
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communicate the performance characteristics of a wind turbine between the turbine499

manufacturers and project developers. The wind turbine producers normally do not500

share the detailed structural and aerodynamic model information of their products501

due to intellectual property concerns. As a result, often the wind project planners502

and operators do not have the full information about the expected performance of a503

turbine at the site they are developing. Furthermore, typically there is no model for504

the uncertainty of the turbine performance. A possible application of the multiple505

polynomial surrogates of a wind turbine could involve fitting the model by the manu-506

facturer, and consequent distribution of the surrogate to users and clients. With this507

approach, project developers could get a useful tool for assessing site feasibility includ-508

ing uncertainty estimation, while not requiring access to detailed engineering models.509

Consequently, the use of more refined site assessment can potentially lead to improved510

overall estimation of levelized cost of energy and its uncertainty.511

Obtaining the PDF(P ) and PDF(EFL) is useful as they can be used for uncertainty512

estimation of the levelized cost of energy on a yearly basis. The surrogates can be513

evaluated on a long time series of the local wind resources (in multiple variables) such514

as the ones predicted by Weather Research and Forecasting (WRF) models without515

considerable extra computational effort. The power surrogate can then predict the516

annual variation of energy production while the EFL can be used to estimate the517

operation and maintenance costs. Such a probabilistic output can be the input to a518

decision support tool.519

A surrogate of the DTU 10 MW RWT within a 4-dimensional turbulent inflow520

parameter space can be built using only 140 input cases (with multiple turbulent521

inflow realizations per case) and can be used to predict the distribution of the power,522

thrust coefficient and equivalent fatigue loads on the turbine. In contrast, traditional523

approaches require in the order of 204 gridsearch/interpolation (full factorial design524

with 20 points per dimension) or 105 − 106 MC sample of the inputs with variance525

reduction [22]. Furthermore, the present approach enables to build an uncertainty526

model around the 10 minutes performance of the turbine that captures the effect of527

the turbulent inflow realization.528

The combined PCE surrogate approach can also be used to improve traditional529

designs in which a conservative scenario for shear and turbulence intensity is consid-530

ered. The fast evaluation of the joint probability distributions for loads based on the531

surrogate model opens possibilities for performing structural reliability analysis and532

probability based design.533

5. Conclusions534

In the present study, a polynomial surrogate model of wind turbine fatigue loads535

and energy output was defined and demonstrated for the DTU 10 MW reference wind536

turbine. Using only 140 input cases was found to be sufficient for building a surrogate537

of the DTU 10MW model within a 4-dimensional turbulent inflow parameter space.538

The presented approach was demonstrated as an efficient alternative of the traditional539
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techniques for characterizing the global behavior of an aeroelastic wind turbine model540

under multiple uncertain turbulent inflow parameters.541

The surrogate has enabled us to perform a global sensitivity analysis on the DTU 10542

MW turbine. This study showed that the hub height wind speed is the most important543

variable to predict the power of the turbine, followed by the turbulent inflow realization544

(TIR); this is a consequence of the correlation between turbulence intensity, shear and545

hub height wind speed. The turbulence intensity is of similar importance as the TIR in546

the prediction of blade root flapwise (BRF), and tower top tilt (TTT) and yaw (TTY)547

equivalent fatigue loads.548

The surrogate can be used in a two-level propagation of uncertainty example. In549

the example presented in this article the year-to-year variability in the shape and scale550

parameters of the hub height wind speed Weibull distribution are propagated into a551

variation of AEP and of lifetime equivalent fatigue loads. Coefficient of variations of552

5.6% for the scale and of 5% for the shape parameters give a coefficient of variation of553

2.4% in AEP, of 1.8% in lifetime E(BRF ) and of 0.5% in lifetime E(TBF ).554

Finally, the methodology presented in this article can be used in other applica-555

tions in which there are fields which might take multiple realizations such as marine556

structures (wave and current fields), offshore structures (wave and wind fields) or soil-557

foundation structures (soil properties fields) among others.558
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Highlights 

• Sparse polynomials are proposed as surrogates of an 

aeroelastic wind turbine model. 

• The surrogates can be used to predict the distribution of 

the 10-min mean power and equivalent fatigue loads 

under realistic atmospheric conditions.  

• The surrogates are used in a two-level uncertainty 

propagation scenario to estimate the uncertainty in 

annual energy production and in lifetime equivalent 

fatigue loads. 
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