Enhanced bonding between TiO2-Graphene oxide
Naknikham, Usuma; Boffa, Vittorio; Yue, Yuazheng

Publication date:
2017

Document Version
Publisher’s PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain.

You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
Enhanced bonding between TiO$_2$-Graphene oxide

Usuma Naknikham1*, Vittorio Buffa1, Yuanzheng Yue1,

1Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.
*E-mail: un@bio.aau.dk

Since an increasing number of emerging pollutants has been found in wastewater and natural water systems [1], many researchers are developing new synergy-effective methods for their abatement [2]. In this context, we fabricate titanium dioxide-graphene oxide (TiO$_2$-GO) heterostructures as photocatalysts, which can efficiently react with organic species under solar light and can enhance the adsorption of water pollutants [3]. Many studies have shown that TiO$_2$-GO heterostructures can quickly mineralize organic dyes in solution under UV-light. However, it is not clear if these materials can provide the same performances under sunlight and with complex real water systems. Hence, this research aims to study the photocatalytic property on GO-TiO$_2$ composites with aqueous solutions of selected emerging pollutants under visible light. The samples were synthesized via the in-situ sol-gel nucleation and growth of TiO$_2$ nanoparticles on GO sheets at 1wt% of GO and pH 6 for 4 hours under thermal [4] or hydrothermal synthesis. The structure and the properties of the new materials were studied by varying the synthesis conditions. The morphology of such composites was characterized by XRD, SEM and TEM analysis. Besides, the study of Ti-O-C and Ti-C interface bonding was carried out using XPS. The band-gap energy was determined using a UV-VIS spectrophotometer equipped with an integrating sphere. Thus, it was possible for us to determine the reactivity of the new photocatalysts under the visible light. Finally, the photocatalytic performances of the GO-TiO$_2$ heterostructures were examined on the model pollutants in a solar simulator.

References:
[3] Li et al., Applied Catalysis B: Environmental, 201, 470-478, (2017)
[4] U. et al., to be submitted