Developing and testing an in-home tele-knee rehabilitation system for patient after knee surgery
Naeemabadi, Mohammad Reza; Dinesen, Birthe Irene; Andersen, Ole Kæseler; Palsson, Thorvaldur Skuli; Simonsen, Ole; Hansen, John

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Background
Musculoskeletal pain, such as osteoarthritis of the knee (KOAs), is the most prevalent medical condition and the second largest contributor to "global disability" [1]. The total number of operations with artificial knees is expected to increase by almost 700% by 2030 [2], which underlines the need for optimal treatment of KOA. Moreover, human resource management will be one of the most challenging issues, due to achieving higher quality medical services and considerable decline in population growth. A proper tele-knee rehabilitation program would be an effective approach to reducing healthcare expenses, improving quality of healthcare services and achieving superior human resource management[3] [4].

State of the art
The audio/video communication were widely utilized in previous studies as a tele-physical rehabilitation tool and video conference between patients and healthcare professional are deemed as an optimized alternative for regular training for remote area [5].

Aim
The aim of this study is to identify needs for in-home telerehabilitation and develop, test and implement a system for patients after knee surgery. It has been observed, the system should enable patient and healthcare professional to communication easily and help the healthcare professional to track the patient’s health recovery. Consequently the study is divided into the three sub-studies.

Studies Design

Study 1
In this study accuracy and usability three commercially available human body tracking technologies were evaluated using a golden standard marker based motion capture system. The subjects performed seven common exercise during the test, while a Microsoft Kinect v1, a Microsoft Kinect v2, three Shimmer sensors and Qualisys motion capture system tracks the subject’s physical activities.

Three different body postures were involved during the exercises which they are lying, sitting and standing. Correspondingly the Kinect sensors were place differently as is shown in following figure.

The results indicated, the Kinect sensors and Shimmer 3 sensors had an acceptable performance in the most of the exercises. While, Microsoft Kinect skeleton SDKs were not able to track body and corresponding skeletal joints, where the subject lying on the floor.

The average RMSE values for the Kinect v1, Kinect v2 and Shimmer 3 sensors were 13.4°, 4.9° and 2.1° respectively.

Study 2
In this study the tele-rehabilitation system has been developed together with the user of the system (patients and healthcare professionals). According to the literatures the study has been divided into following phases [8][9].

Identifying Issues and Challenges

The current issues and challenges of the regular knee rehabilitation program were identified using a structured interview (n=7), participant observation during the interview, received cultural probes, provided relevant documents from the healthcare sector and literatures.

User Driven Innovation

The first workshop in the participatory design study has been held to find the possible solutions for the identified issues within a telehealthcare and telerehabilitation context. A group of researchers, healthcare professionals and patients participated in the workshop.

Innovative User Interface Technologies

The design process included (a) reflexive markers, (b) motion capture, (c) wearable sensors, (d) sensing devices, (e) intervention tracking, (f) sensor fusion, (g) virtual reality, (h) computer vision and (i) cloud computing.

The pilot study was developed using the NVivo software.

References


