Developing and testing an in-home tele-knee rehabilitation system for patient after knee surgery
Naeemabadi, Mohammadreza; Dinesen, Birthe Irene; Andersen, Ole Kæseler; Pálsson, Porvaldur Skúli; Simonsen, Ole; Hansen, John

Publication date: 2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Developing and Testing an In-Home Tele-Knee Rehabilitation System for Patient after Knee Surgery

MR Naeemabadi1, B Dinesen1, OK Andersen2, TS Palsson3, OH Simonsen1, and J Hansen4

1Laboratory of Medical Technology, Technical Health and Tele-rehabilitation, SMIR, Department of Health Sciences and Technology, Aalborg University, Denmark;
2Centre for Sensor-Mote Interaction (SUMI), Department of Health Sciences and Technology, Aalborg University, Denmark;
3Institute for Cardio-Technology, Medical Informatics Group, Department of Health Sciences and Technology, Aalborg University, Denmark;
4Laboratory of Medical Technology, Technical Health and Tele-rehabilitation, SMIR, Department of Health Sciences and Technology, Aalborg University, Denmark.

Background
Musculoskeletal pain, such as osteoarthritis of the knee (KOA), is the most prevalent medical condition and the second largest contributor to “global disability” [1]. The total number of operations with artificial knees is expected to increase by almost 700% by 2030 [2], which underlines the need for optimal treatment of KOA. Moreover, human resource management will be one of the most challenging issues, due to achieving higher quality medical services and considerable decline in population growth. A proper tele-knee rehabilitation program would be an effective approach to reducing healthcare expenses, improving quality of healthcare services and achieving superior human resource management[3, 4].

State of the art
The audio/video communication were widely utilized in previous studies as a tele-physical rehabilitation tool and video conference between patients and healthcare professional are deemed as an optimized alternative for regular training for remote area [5].

Aim
The aim of this study is to identify needs for in-home telerehabilitation and develop, test and implement a system for patients after knee surgery. It has been observed, the system should enable patient and healthcare professional to communicate easily and help the healthcare professional to track the patient’s health recovery. Consequently the study is divided into the three sub-studies.

Studies Design

Study 1
In this study accuracy and usability three commercially available human body tracking technologies were evaluated using a golden standard marker based motion capture system. The subjects performed seven common exercise during the test, while a Microsoft Kinect v1, a Microsoft Kinect v2, three Shimmer sensors and Qualisys motion capture system tracks the subject’s physical activities.

The results indicated, the Kinect sensors and Shimmer 3 sensors had an acceptable performance in the most of the exercises. While, Microsoft Kinect skeleton SDKs were not able to track body and corresponding skeletal joints, where the subject lying on the floor.

The average RMSE values for the Kinect v1, Kinect v2 and Shimmer 3 sensors were 13.4°, 4.9° and 2.1° respectively.

Study 2
In this study the tele-rehabilitation system has been developed together with the user of the system (patients and healthcare professionals). According to the literature the study has been divided into following phases [8],[9].

Identifying Issues and Challenges
The current issues and challenges with the regular knee rehabilitation program were identified using a structured interview (n=7), participant observation during the interview, received cultural probes, provided relevant documents from the healthcare sector and literatures.

User Driven Innovation
The first workshop in the participatory design study has been held to find the possible solutions for the identified issues within a telesurgery and telerehabilitation context. A group of researchers, healthcare professionals, and patients participated in the workshop.

Study 3
The aim of this study is to evaluate feasibility of using a telerehabilitation program for patients after knee operation. 30 patients will be recruited to participate in the study, and the study community will be randomly divided into two groups. Both groups will receive an 8-week post-operative rehabilitation plan. The control group will follow the regular at home exercise, while the target group will receive a remote monitoring package.

REFERENCES