
 

  

 

Aalborg Universitet

The effect of constitutive representations and structural constituents of ligaments on
knee joint mechanics

Orozco, Gustavo A.; Tanska, Petri; Mononen, Mika E.; Halonen, Kimmo S.; Korhonen, Rami
K.
Published in:
Scientific Reports

DOI (link to publication from Publisher):
10.1038/s41598-018-20739-w

Creative Commons License
CC BY 4.0

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Orozco, G. A., Tanska, P., Mononen, M. E., Halonen, K. S., & Korhonen, R. K. (2018). The effect of constitutive
representations and structural constituents of ligaments on knee joint mechanics. Scientific Reports, 8(1), Article
2323. https://doi.org/10.1038/s41598-018-20739-w

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1038/s41598-018-20739-w
https://vbn.aau.dk/en/publications/f7ae302b-a50b-47a7-83a3-a16ce4ed2866
https://doi.org/10.1038/s41598-018-20739-w


1SCiEnTiFiC Reports |  (2018) 8:2323  | DOI:10.1038/s41598-018-20739-w

www.nature.com/scientificreports

The effect of constitutive 
representations and structural 
constituents of ligaments on knee 
joint mechanics
Gustavo A. Orozco1, Petri Tanska1, Mika E. Mononen1, Kimmo S. Halonen2 & Rami K. 
Korhonen1

Ligaments provide stability to the human knee joint and play an essential role in restraining motion 
during daily activities. Compression-tension nonlinearity is a well-known characteristic of ligaments. 
Moreover, simpler material representations without this feature might give reasonable results 
because ligaments are primarily in tension during loading. However, the biomechanical role of 
different constitutive representations and their fibril-reinforced poroelastic properties is unknown. 
A numerical knee model which considers geometric and material nonlinearities of meniscus and 
cartilages was applied. Five different constitutive models for the ligaments (spring, elastic, hyperelastic, 
porohyperelastic, and fibril-reinforced porohyperelastic (FRPHE)) were implemented. Knee joint forces 
for the models with elastic, hyperelastic and porohyperelastic properties showed similar behavior 
throughout the stance, while the model with FRPHE properties exhibited lower joint forces during the 
last 50% of the stance phase. The model with ligaments as springs produced the lowest joint forces at 
this same stance phase. The results also showed that the fibril network contributed substantially to 
the knee joint forces, while the nonfibrillar matrix and fluid had small effects. Our results indicate that 
simpler material models of ligaments with similar properties in compression and tension can be used 
when the loading is directed primarily along the ligament axis in tension.

Stability of the knee joint is provided by different structures such as ligaments, menisci, and muscles which exhibit 
a complex mechanical behavior and affect the articular cartilage response under different loading conditions1. 
In particular, ligaments play an essential role in providing stability in more than one degree of freedom as well 
as restraining knee joint motion during external loads. However, the contributions of the individual ligaments 
and their structural constituents, and the importance of the material models of ligaments are not well known2–4. 
Research on the effect of these ligament properties in the knee joint contributes to understanding joint disorders 
and injury mechanisms.

The experimental and clinical studies have been complemented with computational knee models to overcome 
inherent limitations such as high cost, difficulties to obtain accurate measures in vivo, and reproduce degenerative 
situations in the knee. Previous numerical knee models have investigated the mechanical behavior of knee joint 
ligaments under different loading conditions5–16. For instance, some studies simulated ligaments as nonlinear 
elastic springs and cartilage and menisci as a simple linear elastic material or rigid12,17–19. Other studies have 
included realistic geometries of ligaments, but cartilage and menisci were treated as linear elastic materials14,20. 
Models with more complicated properties for cartilage have not typically incorporated fibril-reinforced biphasic 
properties for ligaments during dynamic gait21,22.

Nonlinear tensile properties of ligaments along axis have been extensively documented23–25, however, less 
studies have reported the anisotropy and the compressive mechanical response of the tendon or ligament tis-
sue26–28. Nonetheless, the anisotropy of these tissues has been primarily suggested to results from the collagen 
fibril orientation26. During in vivo loading, the contribution of the compressive properties of ligaments may occur 
to some extent when ligaments are exposed to multiaxial states of stresses, bending, and transverse compressive 
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loads. However, many finite element (FE) studies4,12,14,29,30 and musculoskeletal models18,31 have considered that, 
due to the ligament and tendon structure and composition, their contribution in tension is much greater than that 
in compression. This variance in compression and tension along the main axis of loading (strong in tension and 
soft in compression) has also been documented thoroughly for other fibril-reinforced poroelastic tissues, such as 
articular cartilage and meniscus32–36.

In order to apply knee joint models for clinical cases with large patient groups, they should be simple and fast 
but at the same time accurate and reliable. Because ligaments are primarily in tension during joint loading, it 
might be that the aforementioned compression-tension characteristic is not always needed. Then the properties 
along the tensile direction mainly control the ligament response and the compressive properties are not neces-
sarily that important. For this reason, ligaments modeled in the knee with similar properties in compression and 
tension might give reasonable results at those time points of loading when there is minimal amount of bending 
and therefore local compression. This approach would simplify the model generation applied for clinical pur-
poses, reducing computational demands (run time) and labour required to generate personalized knee models. 
Specifically, reliable and simplified models could potentially provide expeditious diagnostics for improving clin-
ical outcomes in patients with orthopedic disorders.

Thus, the aim for this study was to investigate the effect of different constitutive representations and struc-
tural constituents (fibrillar matrix, nonfibrillar matrix, fluid) of ligaments on knee joint mechanics during the 
stance phase of gait. A finite element model of the knee joint which takes into account geometric and material 
nonlinearities of meniscus and cartilages was applied. Particularly, we simulated the effect of fibril-reinforced 
porohyperelastic properties of ligaments on the knee joint function as well as forces, stresses and strains in the 
tibial and patellar cartilages during walking. These results were compared with knee models with simpler geome-
tries (springs) and 3-D constitutive models for ligaments. We hypothesize that the collagen network of ligaments 
contributes strongly to the knee joint mechanics while the contribution of the nonfibrillar matrix and especially 
fluid is minimal. However, we also hypothesize that at certain time points of stance when ligaments are elongated 
primarily along their axis it is possible to obtain similar mechanical response with a simple representation for 
ligaments compared to a complex formulation (fibril-reinforced porohyperelastic).

Methods
A general workflow of this study is shown in Fig. 1a.

Finite element model.  A previously developed finite element model was applied and modified here22. A 
knee joint of an asymptomatic male subject (28 years, 80 kg) was imaged using MRI and the joint tissues (femo-
ral, tibial and patellar cartilages, and meniscus) were segmented and meshed as described in our earlier study22. 
This MR imaging was conducted according to the ethical guidelines of Kuopio University Hospital, Finland. MR 
imaging was conducted with the permission (94/2011) from the local ethical committee of the Kuopio University 
Hospital, Kuopio, Finland, and written informed consent was obtained from the volunteer. Based on the same 
knee joint, patellar and quadriceps tendons (PT and QT) and six ligaments were segmented in this study. The six 
ligaments were anterior and posterior cruciate ligaments (ACL and PCL), medial and lateral collateral ligaments 
(MCL and LCL), and medial and lateral patellofemoral ligaments (MPFL and LPFL) (Fig. 1). Ligament and ten-
don geometries were segmented using the MR images (a clinical 3.0 T scanner, Philips, Best, Netherlands) which 
were taken using 3D fast spin-echo sequence (VISTA) (in-plane resolution = 0.5 mm, slice thickness = 0.5 mm, 
TR = 1300 ms, TE = 32.3 ms). Ligaments and their exact insertion sites were determined by consulting two 
orthopedic surgeons during the segmentation process. The segmented geometries were meshed in Abaqus v.6.13 
(Dassault Systémes, Providence, USA). Gait input, properties of the patellofemoral ligaments and boundary 
conditions for the knee model were identical to an earlier study21,22 (Fig. 1b–d). In the simplified models, the 
ligaments and tendons were represented using an array of spring elements22,37 or meshed with tetrahedral pore 
pressure elements (type = C3D4P) in the 3D continuum models. In the most complex model, ACL, PCL, LCL and 
MCL were modeled as a fibril-reinforced porohyperelastic material. Cartilages were defined as a fibril-reinforced 
poroviscoelastic material38–40, while menisci were considered as a fibril-reinforced porohyperelastic material; our 
previous studies have validated the materials and applied these to the knee joint models37,41. The cartilage-bone 
interfaces were defined as rigid boundary conditions. Frictionless surface-to-surface contact was defined for all 
the contacting surfaces, i.e., interactions between cartilages and menisci, the external surfaces of solid ligaments 
and cartilages, and ACL and PCL. The master surfaces were determined as a surface, whereas the slave surfaces 
were defined as a node surface. Numerical simulations were run on a high performance workstation with 48x 
Intel Xeon E5-2690 v3 CPU (2.60 GHz) and 264 GB of memory.

Models with different mechanical properties for ligaments.  Five knee joint models were constructed 
with different constitutive models for the ligaments: 1) spring, 2) linear elastic, 3) hyperelastic, 4) porohyperelastic 
and 5) fibril-reinforced porohyperelastic (FRPHE) material, which we briefly describe here (see the supplemen-
tary material for more details about the implementation of these constitutive models). In all cases, stress-strain 
behavior of the ligaments was defined such that the ligaments produced force in tension (strain > 0) but not in 
compression (strain < 0) during the gait. For the first two cases, Hooke´s law represents the relation between 
stresses (or forces) and strains (or elongations)

σ ε= C , (1)tot

where σtot is the Cauchy stress tensor, ε is the infinitesimal strain tensor, and C is the fourth-order stiffness matrix, 
which is defined by the Young’s modulus (E) and Poisson’s ratio (ν). For the spring model, the stiffness is defined 
by a spring constant ks. The third model was defined using a neo-Hookean material, in which the stresses are 
given by
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σ = + ⋅ −( )K J
J

G
J

JI F F Iln( ) ,
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m T 2
3

where Km is the bulk modulus, Gm is the shear modulus, J is the determinant of the deformation gradient tensor 
F and I is the unit tensor. For the fourth model, the ligaments were described as a biphasic tissue in which the 
porous solid matrix is fully saturated with water. The total stress in the tissue is then given by

σ σ σ σ= + = − pI, (3)tot s fl eff

Figure 1.  (a) Study workflow. (b) Gait input data for the numerical knee joint model, as obtained directly 
from21. (c) External-internal, valgus-varus moments, and flexion-extension rotation. (d) Anterior-posterior, 
distal-proximal and medial-lateral forces. Components of the total quadriceps force. (e) A posterior-lateral view 
of the three-dimensional finite element model of the knee shows articular cartilages, ligaments and tendons. The 
original model was compared to experiments in21.



www.nature.com/scientificreports/

4SCiEnTiFiC Reports |  (2018) 8:2323  | DOI:10.1038/s41598-018-20739-w

where σtot is the total stress tensor, σs is the stress in the solid matrix, σfl is the stress in the fluid matrix, p is the 
hydrostatic pressure and σeff  is the effective solid stress. In this model, σeff  was described by equation (2). 
Additionally, the permeability k was assumed to be strain-dependent and is as follows:

φ φ
φ φ

=




 −












− 




k k M J
(1 )

exp ( 1)
2

,
(4)

0
0 f

0 s

2 2

where k0 is the initial permeability, M is a positive constant, φ0 is the initial volume fraction of the solid phase, φf 
is the current volume fraction of the fluid phase and φs is the current volume fraction of the solid phase.

Finally, the FRPHE model considers that the solid matrix is divided into a non-fibrillar part, describing pri-
marily the proteoglycan matrix, and a fibrillar elastic network, representing the collagen fibers. The total stress in 
the ligament tissue is then given by

σ σ σ σ= − = + −p pI I, (5)tot s f nf

where σf  and σnf  are the stresses in the collagen fibers and the non fibrillar matrix, respectively. The non-fibrillar 
component of the ligament is defined using a neo-Hookean material with biphasic properties as was described in 
equation (3). The fibril stress σf  is given by

σ
ε ε

ε
=






>
≤

E , 0
0 , 0

,
(6)

f
f f f

f

where Ef is the fibril network modulus and εf is the fibril strain. The fibril network stress arises from the sum of 
primary and secondary collagen fibril stresses, which is calculated separately for each integration point in each 
element40. Stresses for these fibrils in tension were

σ ρ σ
σ ρ σ






=
=

C
,

(7)
z

z

f,p f

f,s f

where σf,p and σf,s are the fibril stresses for primary and secondary fibrils, respectively, C is the density ratio 
between primary and secondary fibrils and ρz is the relative collagen density.

Analysis.  For the initial analysis, we estimated the initial group of material constants for each constitutive 
model based on experimental studies (Table 1). A Gaussian distribution was generated with a relative standard 
deviation (RSD) of 0.62, 0.60, 0.70, 0.71, 0.52 and 0.43 for the ACL, PCL, LCL, MCL, PT and QT (Fig. 2) 14,16,42,43. 
Based on these constants we performed a preliminary evaluation for all models on the tibial reaction force. A 
detailed list of material parameters used in the initial analysis for each constitutive model is given in Table 1.

After the preliminary assessment of the mechanical parameters for every constitutive model, we modified 
the stiffness in the spring model and the fibril network modulus in the FRPHE model iteratively in the ligaments 
until the obtained “adjusted” values matched the first peak of the tibial reaction force with respect to the rest of 
the knee models. Then, the FRPHE model was used for evaluating the influence of the fibril network modulus 
and the nonfibrillar matrix modulus of ligaments. Furthermore, the initial permeability k0 and material constant 
M were also varied in this analysis. Finally, in the biphasic models, we analyzed two boundary conditions on the 
external surface of ligaments: sealed and free draining. A list of the ranges of the material parameters used in the 
parametric study is given in Table 2.

In order to assess the effect of the ligament representation (springs and 3D continuum) and the contributions 
of different structural constituents (fibril network, nonfibrillar matrix, fluid), knee joint reaction forces, rotations 
and translations as well as stresses, strains and pore pressures of the tibiofemoral and patellofemoral contact were 
determined for all models during the stance phase of gait.

Results
Comparison between the constitutive models.  Stress distribution in cartilages and menisci at dif-
ferent phases of stance is seen in Fig. 3. By using the values of the material parameters in the preliminary anal-
ysis (Table 1), tibial reaction forces in the models with elastic, hyperelastic and porohyperelastic properties for 
ligaments showed similar behavior throughout the stance, while the model with ligaments modeled as spring 
elements and FRPHE properties yielded a similar trend, but the last case exhibited lower joint reaction forces in 
terms of body weight (BW) during the entire stance phase of gait (Fig. 4a). After this first evaluation, we matched 
the first peak force among the models through a decrease of 50% of the stiffness for all ligaments in the spring 
model as well as modifying the fibril network modulus values in the FRPHE model (Table 1). For these “adjusted” 
values, both the modified spring and FRPVE models yielded lower joint reaction forces after the first peak load 
(Fig. 4b), and the spring model exhibited slightly lower forces in the mid-stance of the gait compared to the 
FRPHE model. Additionally, the model with the FRPHE ligaments displayed high tensile stresses and essentially 
no compressive stresses, while the other models with solid ligaments experienced both tensile and compressive 
stresses at the second half of the stance phase (Fig. 5).

Based on these models with “adjusted” material parameters, inferior-superior translations and varus-valgus 
rotations in the knee were similar in all models. However, the models with solid ligaments yielded a maximum 
reduction of 73% (1.72 mm) in the anterior femoral translation, as compared to the spring model, at the begin-
ning of stance (Fig. 6). The medial-lateral translation was similar in the solid models with exception of the FRPHE 
model for ligaments, where lateral translation was higher throughout the stance (Fig. 6c). Though, the change in 
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the translation during the stance (min – max) was similar in all solid models. Compared to the solid models, the 
spring model showed slightly higher medial translation at 60% of stance. Further, the FRPHE model displayed a 
smaller external-internal rotation at ~60% of the stance. In the FRPHE model, the patellar force was ~24% higher 
at ~25% of the stance compared with the spring model (Fig. 6e and f). Again, all other solid models gave consist-
ent results and these forces were slightly higher than those in the FRPHE and spring models.

Material formulation ACL PCL MCL LCL PT QT

Spring

Initial

k (Nmm−1) 201 258 114 134 545 475

Adjusted

k (Nmm−1) 100 129 57 67 545 475

Linear Elastic

E (MPa) 123 168 224 280 336 370

ν 0.4 0.4 0.4 0.4 0.4 0.4

Hyperelastic (Neo-Hookean)

C1 (MPa) 22 30 40 50 60 66

D (MPa−1) 0.005 0.0036 0.003 0.0021 0.002 0.002

Porohyperelastic

C1 (MPa) 22 30 40 50 60 66

D (MPa−1) 0.005 0.0036 0.003 0.0021 0.002 0.002

k0 (10−15 m4/Ns) 2.9 2.9 2.9 2.9 2.9 2.9

M 7.98 7.98 7.98 7.98 7.98 7.98

Fibril-reinforced porohyperelastic (FRPHE)

Initial

Ef (MPa) 130 180 270 280 184 380

Adjusted

Ef (MPa) 100 40 120 100 150 150

Unchanged values

Em (MPa) 1 1 1 1 10 10

νm 0.4 0.4 0.4 0.4 0.4 0.4

k0 (10−15 m4/Ns) 2.9 2.9 2.9 2.9 2.9 2.9

M 7.98 7.98 7.98 7.98 7.98 7.98

C 12 12 2 2 2 2

Table 1.  Reference values for ligament material parameters. In the spring and FRPHE models, the adjusted 
values are the fibril network modulus values after matching the first peak of the tibiofemoral joint reaction force 
with the rest of the knee models. ks = spring constant, E = Young’s modulus, ν = Poisson’s ratio, C1 = material 
coefficient, D = compressibility coefficient, k0 = initial permeability, M = exponential term for the strain-
dependent permeability, Em = nonfibrillar matrix modulus, Ef = fibril network modulus, νm = Poisson’s ratio of 
the nonfibrillar matrix, C = density ratio between primary and secondary fibrils.

Figure 2.  Probabilistic density function of Young’s modulus of the ACL2,15,25,75–83, PCL2,15,75,77,80,82,84–87, 
MCL2,16,24,25,42,88–94, LCL2,23,88,91,92,94–101, PT81,88,95,102–114, and QT81,112,113,115. In this study, biphasic properties for 
ligaments were selected based on43 and MPFL and LPFL were defined as elastic truss elements with a Young’s 
modulus equal to 19 MPa and Poisson’s ratio was set to 0.499.
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Similarly with joint reaction forces and motions, elastic, hyperelastic, and porohyperelastic models displayed 
quite similar behavior in the quantitative analysis of average contact pressures, maximum principal strains and 
stresses, fibril strains and fluid pressures in the contact area of the medial and lateral compartments of tibial carti-
lage during the entire stance phase of gait (Fig. 7). In contrast, the FRPHE model revealed lower values of contact 
and fluid pressures, and higher values of maximum principal stresses and fibril strains in the medial compart-
ment, while contact and fluid pressures, stresses and strains in the lateral compartment were mostly highest in the 
FRPHE model. This result was related to the different contact area in the FRPHE model resulting from slightly 
different medial-lateral translation and external-internal rotation (Fig. 6).

The run time for the spring model was 605 minutes, whereas those for the hyperelastic and FRPHE models 
were 331 and 823 minutes, respectively.

Parametric analysis of the effect of fibrillar and non-fibrillar components.  Parametric anal-
ysis within the FRPHE model by varying the fibril network modulus in every ligament (Table 2) showed a 
considerable influence of PCL, ACL and LCL on tibial and patellar forces (Fig. 8a and b); minimal impact 
was observed by the rest of the ligaments (data not shown). Variation of the PCL fibril network modulus 
showed the largest changes; increasing the modulus reduced the first peak force at the tibiofemoral con-
tact and increased the second peak but decreasing the modulus value caused an opposite behavior. On the 
other hand, the fibril network modulus of the ACL and LCL modulated joint forces similarly during the 
entire stance phase; increasing the fibril network modulus increased tibiofemoral joint forces consistently 
(Fig. 8a). Modifications in the PCL, ACL, and LCL fibril network properties demonstrated similar effect in 
the force on patellar cartilage; with the chosen range of the fibril network modulus values, PCL controlled 
mostly this force as well (Fig. 8b).

In contrast, variation of the nonfibrillar matrix modulus in all ligaments exhibited only a small influ-
ence on the tibiofemoral and patellofemoral reaction forces; increasing substantially the nonfibrillar matrix 
modulus reduced the first peak force at the tibiofemoral contact but augmented the forces after ~40% of the 
phase stance (Fig. 8c). In addition, variations in the initial permeability k0 and material constant M, as well 

Fibril network modulus, Ef 10–250 (MPa)

Nonfibrillar matrix modulus, Em 1–50 (MPa)

Poisson’s ratio, νm 0.4

Initial permeability, k0 0.15–15 (10−15 m4/Ns)

Nonlinear term for the strain-dependent permeability, M 1–10

Table 2.  Range of values used in the parametric analysis with the FRPHE model.

Figure 3.  Maximum principal stress distributions of femoral, patellar, and tibial cartilages, and meniscus in the 
FRPHE model during the stance phase of gait (Lat: lateral; Med: medial).
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as the two boundary conditions on the external surface of ligaments (sealed and free draining) in the FRPHE 
model, did not change the results on the tibiofemoral contact (the maximum difference in joint reaction 
forces was 2%).

Figure 4.  (a) The total tibiofemoral joint reaction force for the models with different ligament representations 
(Table 1). (b) The total joint forces with the “adjusted” material parameters for the FRPHE model and the spring 
model (Table 1).

Figure 5.  Tensile and compressive stresses for σ22 in PCL for the hyperelastic (left) and fibril-reinforced 
poroelastic material (right) at the second peak of the stance phase. The hyperelastic model experiences both 
tensile (positive values) and compressive (negative values) stresses, though the tensile stresses are dominant, 
while the FRPHE model exhibited tensile stresses and virtually no compressive stresses.
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Discussion
In the present study, computational analysis showed that different geometrical representations (springs ver-
sus solid) and constitutive formulations of ligaments, particularly the compression-tension behavior, affect the 
human knee motion and tibial cartilage responses. This was mainly explained by the fibril-reinforcement attribute 
causing large tensile stresses and almost negligible compressive stresses. On the other hand and with a proper 
choice of material parameters, during the first ~50% of the stance all constitutive models could produce similar 
results. Further parametric analysis also demonstrated that the effect of the fibril network modulus of ligaments 
on the joint forces was predominant, and its variation, particularly in the PCL, modulated joint forces substan-
tially. The nonfibrillar matrix modulus of ligaments had only a small influence on the forces, while fluid flow had 
virtually no influence on the joint forces and cartilage responses.

The original model with cartilage and menisci meshed, ligaments modeled as springs, and knee motion imple-
mented was developed earlier and compared to experiments22,44. In the present study, we generated new ligament 
and tendon geometries for this model and implemented several different constitutive models for ligaments. For 

Figure 6.  Tibial translations (a–c), rotations (d,e) with respect to femur and patellar forces (f) during the stance 
phase of gait for different constitutive models for the ligaments. (a) Posterior-anterior translation. (b) Inferior-
superior translation. (c) Medial-lateral translation. (d) Valgus-varus rotation. (e) External-internal rotation. (f) 
Patellar force.
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these reasons, we only briefly mention here how the current model results compare with experiments and compu-
tational studies. The magnitude of the joint reaction forces (2–3 BW) obtained from all the generated numerical 
knee models agree with recent experimental data45–47 and numerical studies48,49. Knee motion, contact pressures, 
and cartilage stresses and strains were also consistent with several earlier experimental and computational stud-
ies29,50–52. Varus-valgus and internal-external rotations matched well with the measured values of the same sub-
ject. Find more details about the validation of this model from the supplementary material.

Figure 7.  Average contact pressure, maximum principal strain, maximum principal stress, fibril strain, and 
fluid pressure in the contact area of the (a) medial and (b) lateral tibial cartilage surfaces during the stance phase 
of gait for different constitutive models of the ligaments.
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Although the contribution of the compressive properties of ligaments may occur to some extent in vivo 
where ligaments are exposed to multiaxial states of stresses, bending, and transverse compressive loads during 
locomotion26–28, it is evident that this contribution is much smaller than that in tension12,14,29. The FRPHE 
model was able to capture this compression-tension characteristic, thereby giving slightly different knee joint 
forces and cartilage responses during loading as compared to the other solid models without this feature. The 
effect of the lack of the compressive properties of ligaments with the fibril-reinforced model was particularly 
observed at the end of stance, where particularly the PCL experienced also bending and subsequent local com-
pressive loads and then the force obviously was slightly higher in the models without this compression-tension 
difference in the ligaments. Yet, local tensile stresses also in these simpler solid models were substantially 
higher than local compressive stresses because ligaments obviously are primarily in tension during gait.

In terms of joint reaction forces, the simplest model with spring elements representing ligaments was actually 
the closest match with the FRPHE model. The reason for this is that this model has no compressive resistance to 
load. The difference between these models came from the ligament geometry and nonfibrillar matrix contribu-
tion in the FRPHE model. Particularly, in ligaments as 3D continuum, cruciate ligaments had varying degrees 
of twisting during loading and collateral ligaments bent dissimilarly and inhomogeneously throughout the knee 
motion but especially from 50% to 90% of the stance. This complex interplay caused changes in length and fibril 
orientation of ligaments, causing combined loading states in the ligaments e.g. shear and bending, and showing 
an intricate interaction between the fibril network and nonfibrillar matrix. Moreover, the FRPHE model could 
produce the same response with the rest of models during certain time points of the stance. These findings indi-
cate that simpler formulations of ligaments could be used to solve particular biomechanical problems, without the 
need to develop an elaborated constitutive representation for ligaments.

Tibial lateral and anterior translations and external rotation were the most sensitive kinematic param-
eters under varying ligament constitutive models which also contributed to the different joint reaction 
forces particularly at about 50 to 100% of the stance. Complex mechanical interactions in and between 
solid cruciate ligaments provided a reduced elongation and therefore smaller translation. In contrast, spring 
ligaments possessed more space to elongate, consequently this simplified model experienced higher trans-
lations. Additionally, FRPHE ligaments were able to bend and were supported partly by tensile forces at 
certain edges and virtually no compressive loads, while spring elements, which are constantly loaded along 
their axis, have a reduced capacity to twist during the knee motion. Interestingly, fibers in ligaments as 3D 

Figure 8.  Tibiofemoral (a) and patellofemoral joint reaction forces (b) in the FRPHE model after parametric 
variation of the fibrillar network modulus in ligaments (Table 2), while the other model parameters were kept 
unchanged (Table 1). Tibiofemoral (c) and patellofemoral joint reaction forces (d) in the FRPHE model after 
parametric variation of the nonfibrillar modulus in ligaments from 0.1 to 50 MPa, while the other material 
parameters were kept unchanged (Table 1).
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continuum contributed to reduce the elongation of ligaments, and accordingly the FRPHE model exhib-
ited slightly different medial-lateral translation and smaller external-internal rotation regarding the other 
three-dimensional models for ligaments.

Due to slightly different knee motion in the FRPHE model compared to the other models, the tibiofemoral 
contact area was relocated in the medial tibial plateau and the contact area increased slightly. Therefore, the aver-
age contact and fluid pressures, and maximum principal strain in cartilage were smaller in the fibril-reinforced 
model, while elevated average fibril strains and tensile stresses were generated in the cartilage contact area. On 
the other hand, and primarily due to different medial-lateral translation, stresses, strains, and contact and fluid 
pressures in the lateral joint compartment were the highest in the FRPHE model.

It is known that the mechanical properties of ACL, PCL, and LCL have a notable effect on the biomechanical 
response of the knee joint18,20,52. Our parametric study with the FRPHE model showed also that tibiofemoral and 
patellofemoral joint forces were strongly influenced by the collagen network modulus of ACL, PCL, and LCL. This 
result is consistent with numerical studies which have examined the integrated interplay of knee ligaments29,52–54. 
Interestingly, while increasing the fibril network modulus of both the ACL and LCL increased joint reaction forces 
consistently throughout the gait, by increasing the fibril network modulus of the PCL first reduced the joint reaction 
forces (till ~50% of stance) and then increased the forces (from ~50% till 90% of stance) above the other models. On 
the other hand, reduction in the PCL fibril network modulus caused increased joint reactions forces through the 
stance. This implies an increase of anterior tibial translation and shift of the tibiofemoral contact area toward poste-
rior direction, increasing the stress concentration in specific areas of the tibial cartilage. In addition, the ACL influ-
ence is consistent with our previous study22 and the remarkable PCL impact is congruent with recent studies55–58. 
In addition, this particular PCL influence is consistent with experimental studies that have reported a significant 
increase in joint contact forces and pressure concentrations on the medial compartment in a posterior cruciate defi-
cient knee59,60. This could be the mechanism that causes joint degeneration after PCL deficiency58.

The parametric results within the FRPHE model suggest that fluid flow of ligaments (permeability and fluid 
flow boundary condition) has a negligible role for the cartilage response during the knee joint motion primarily 
due to tensile forces generated on ligaments. This result is consistent with several earlier studies on soft tissues, 
suggesting that the transient response of these tissues in tension is controlled by intrinsic properties of the solid 
matrix36,61,62, not by fluid flow which controls the transient response in compression63,64. Consistently, the effect 
of the nonfibrillar matrix modulus (range 0.1–50 MPa) on knee joint forces was small. This is also consistent with 
several other studies on fibril-reinforced poroelastic soft tissues36,65–68, and is a result of the high ratio between the 
fibril network and nonfibrillar matrix moduli.

Since the density ratio between the primary, organized fibrils and secondary, randomly organized fibrils (C) in 
the FRPHE models is not known for ligaments, in ACL and PCL it was assumed to be the same than that given for 
cartilage. However, lower C values had to be given for MCL and LCL since high values in these ligaments started 
to control the end part of the stance differently than with any other model. Since the collagen network stress (Eq. 
9) is controlled by both the fibril network modulus and C, alternative combinations of these values could give 
the same result. Therefore, the modulus values in the fibril-reinforced model should not be directly related to the 
elastic tensile modulus values obtained from experiments.

Some limitations exist in this study regarding the model generation, input and assumptions. First, tissue 
geometries and gait input data were based on a single healthy male subject, as obtained from an earlier study22, 
except ligaments and tendons which were segmented separately for the purposes of this investigation. We also 
modeled only walking because it is the most typical type of movement. However, the fundamental behavior of 
ligaments should not change by modeling another subject and this methodology can be easily extended for other 
daily motor tasks (e.g. stair climbing, sit-to-stand, squatting). Second, the ligament pre-strains were taken from an 
earlier numerical study69 although PCL might be lax and it may not be active at full extension17,70. Also ligament 
collagenous part was simplified (bilinear) and not fully nonlinear with the toe region as has been presented in the 
literature71 because ligaments were assumed to function primarily at the linear region in the knee8,30. However, the 
ligament pre-strains and bilinearities were assumed to be the same for all the models analyzed in this study and 
the conclusion about the effect of different material representations should not change by different pre-strains and 
ligament properties. Though, if the PCL strain would be much smaller during loading, then likely the contribu-
tion of the fibril network modulus of the PCL would not be that drastic. Nonetheless, with these assumptions the 
maximum tibial reaction forces obtained (2–3 BW) concurred well with selected previous studies46,48.

The run time for the spring model was shorter than that for the FRPHE model but longer than that for the 
hyperelastic model. Also, the pre-processing steps for the spring model were faster than those for the hyperelas-
tic and FRPHE models due to segmentation. On the other hand, the development and implementation of the 
fibril-reinforced properties of ligaments is demanding and time-consuming. These differences might be important 
in medical applications. However, as shown by the results, simpler models do not necessarily produce the same 
results with more complex fibril-reinforced models throughout the stance phase. Hence, simple representations for 
tissues could be used if they produce results close to the more realistic fibril-reinforced materials72 in certain steps 
of the phase stance. Moreover, automatic segmentation and meshing techniques would also be desirable to speed 
up the creation of the knee models73,74. The models with higher complexity might be better for investigation of local 
changes in the tissues such as rupture and biophysical adaptations of ligaments, tendons, cartilage and menisci.

In conclusion, the results of the current study suggest that the compression-tension relationship in ligaments 
due to the fibril-reinforcement contributes substantially to the knee joint motion and forces as well as cartilage 
responses during stance, while the roles of the nonfibrillar matrix and fluid are small or negligible. On the other 
hand, at certain phases of stance and with a proper choice of material parameters, knee models with simpler 
material models of ligaments (either springs or other solid constitutive models) are suggested to be able to repro-
duce similar results. These findings and suggestions are relevant to consider in biomechanical models to explore 
treatments (surgical or conservative) associated with knee ligament injuries.
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