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Stochastic multipath models

For the transmitted (complex baseband) signal s(τ), the received signal
reads:

y(τ) =
∑
k

αks(τ − τk),

The delay and gain pairs form a marked point process {(τk , αk)} with
intensity function intensity function, or path arrival rate, λ(τ) and
conditional gain distribution p(α|τ).

Numerous such multipath models have been proposed, with delays
generated from various point processes and gain distributions.

Example: In Turin’s model [Turin et al., 1972], {(τk , αk)} is a marked
Poisson point process fully specified by λ(τ) and p(α|τ).



Factorization of the power delay spectrum

The arrival rate and mark distribution determines second moment of the
received signal. For zero-mean and conditionally uncorrelated gains:

E[|y(τ)|2] =

∫ ∞
−∞

P(τ − t)|s(t)|2dt,

with a power-delay spectrum P(τ) that factorizes as

P(τ) = σ2
α(τ)︸ ︷︷ ︸

Variance of gain
at delay τ

(variance of p(α|τ))

× λ(τ)︸︷︷︸
Path arrival rate,

(intensity function of
the point process {τk})

.

Thus, two of these three entities should be defined to specify the second
moment of the model.



How to obtain the arrival rate?

Measurement of arrival rate can be challenging:

I Requires estimators for arrival rate based on received signal.

I Results are affected by imperfections of the estimators as well as
noise limitations.

I Often, the (within cluster) arrival rate is set to a constant for
convenience. This choice does not replicate the specular-diffuse
transition observed in measurements.

Here, we attempt to analyze the propagation environment:

I Analysis of realistic environments is intractable.

I The method is feasible for simplistic propagation environments.

I We focus here on the arrival rate for a room-electromagnetic setting
which can be analyzed using mirror theory.



Rectangular room channel

Rectangular room with directional transmit at receive antennas.
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The antenna gain in direction Ω is denoted G (Ω).

The beam coverage fraction,defined as the fraction of the sphere through
which the antenna radiates power, i.e.

ω =
1

4π

∫
O
dΩ, O = {Ω : G (Ω) ≥ ε ·Gmax},

where Gmax is the max. antenna gain and ε is a small constant set
according to the application.



Mirror sources for a rectangular room

Iteratively mirroring the transmitter in the boundaries of the room give a
set of mirror sources with corresponding mirror rooms index by a triplet k.

T

R

c=

For each mirror source k we can compute

I propagation delay τk
I direction of departure ΩTk

I direction of arrival ΩRk

I gain αk

|αk |2 = g |k| · GT (ΩTk)GR(ΩRk)

(4πcτk/lc)2

where g is the wall reflection gain, |k|
is the reflection order for source k, lc is
the carrier wavelength and c is the
speed of light.



Simulation example: Received signal power

We plot the received signal power for identical sector antennas with
spherical cap gain patterns specified by the beam coverage fraction ω.
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Simulation Settings

Room dim., 5× 5× 3 m3

Reflection gain, g 0.6
Center Frequency 60 GHz
Bandwidth, B 2 GHz

Antennas point in line-of-sight direction.

Observations:

I Specular-diffuse transition.

I More directive antennas
lead to sparse received signal
with higher per component
power.



Approximate arrival count and rate

The arrival count N(τ) is the number of signal components received up
until delay τ .

T

R

c=

By adaptation of the room acoustical
reasoning in [Eyring, 1930] we obtain

N(τ) ≈ 1(τ ≥ τ0)

[
1 +

4πc3(τ 3 − τ 3
0 )

3V

]
ωTωR

where τ0 is the line-of-sight delay and V is
the room volume.

Differentiation gives the arrival rate

λ(τ) ≈ δ(τ − τ0)ωTωR+

1(τ > τ0)
4πc3τ 2

V
ωTωR



Simulation example (contd.): Arrival count
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! = 1 (Isotropic )

! = 0.5 (Hemisphere )
! = 0.25 (Sector Antenna)  

N(τ) ≈ 1(τ ≥ τ0)
[
1 +

4πc3(τ 3−τ 3
0 )

3V

]
ωTωR

Observations:

I Good approximation at large delays.

I The approximation account well for the
antenna directivity.



Random transmitter position and orientation

By randomizing transmitter position and orientation, we can derive exact
result for the arrival rate by use of stochastic geometry:

For uniformly distributed transmitter position and orientation the mean
arrival count reads exactly

E[N(τ)] =
4πc3τ 3

3V
ωTωR1(τ > 0)

with corresponding arrival rate

λ(τ) =
4πc3τ 2

V
ωTωR1(τ > 0).

Proof: Observe that the set of mirror source positions forms a
homogeneous point process and apply Campbell’s theorem to the mean
arrival count. [Pedersen, 2018]



Simulation example (contd.): Mean arrival count
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(a) Arrival Count, 10 realizations. Sector antenna

!
=
1

!
=
0:5

!
=
0:2
5

10-8 10-7

Delay [s]

100

101

102

103

A
rr
iv
a
l
C
o
u
n
t

(b) Average Arrival Count. Sector antenna
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(c) Arrival Rate. Sector antenna
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(d) Received Signal Mean Power. Sector antenna

Simulation,Sector antenna, !  = 1

Simulation,Sector antenna, !  = 0.5
Simulation, Sector antenna, !  = 0.25
Theory Uncorrected
Theory, Correction factor 9  =1.083

Observations:

I The mean count is
affected by the antenna
directivity.

I Individual realizations of
the count fluctuate
about the mean.

I The fluctuations are
largest (compared to the
mean) at low delays.



Power delay spectrum

The power-delay spectrum can be approximated as [Pedersen, 2018]

P(τ) = σ2
α(τ)︸ ︷︷ ︸

≈ e−τ/T
(4πcτ/lc )2 · 1

ωTωR

× λ(τ)︸︷︷︸
= 4πc3τ2

V ωTωR1(τ>0).

≈ 1(τ > 0)
e−τ/T

4πV /l2c c
.

with the (Eyring-Kuttruff) reverberation time defined as

T = − 4V

cS ln(g)
· ξ, where ξ =

1

1 + γ2 ln(g)/2
.

The constant γ2, depends on the aspect ratio of the room and is typically
in the range 0.3 to 0.4 [Kuttruff, 2000].

The delay power spectrum does not depend on the antenna directivity!



Simulation example (contd.): Power delay spectrum

Average received power (10000 Monte Carlo runs)
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(a) Arrival Count, 10 realizations. Sector antenna
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(b) Average Arrival Count. Sector antenna
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(c) Arrival Rate. Sector antenna
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(d) Received Signal Mean Power. Sector antenna

Simulation,Sector antenna, !  = 1

Simulation,Sector antenna, !  = 0.5
Simulation, Sector antenna, !  = 0.25
Theory Uncorrected
Theory, Correction factor 9  =1.083

Observations:

I The approximation gives
an excellent fit when
applying the correction
factor. In this case,
γ2 = 0.35 and ξ ≈ 1.08.

I The power-delay
spectrum is unaffected
by the antenna
directivity.



Simulation example (contd.): RMS Delay Spread

CDF, Mean delay:
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I Higher antenna directivity gives lower rms delay spread.

I This occurs even in models with identical power delay spectrum.



Conclusion

I For simplistic scenarios, we can derive the path arrival rate by
randomizing the antenna positions and orientations.

I Averaging over the uniformly distributed transmit antenna position
and orientation, we see that the path arrival rate

λ(τ) =
4πc3τ 2

V
ωTωR1(τ > 0)

– quadratic in delay (gives a specular-diffuse transition)
– inversely proportional to room volume (larger rooms lead to a slower

transition)
– proportional to the product of antenna beam coverage fractions

(more directive antennas yield lower arrival rate).

I Even though the power delay spectrum is not affected by antenna
directivity, the distribution of rms delay spread is.

I To accurately model system related entities such as rms delay
spread, the model should account for the arrival rate.
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