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Abstract 

Photovoltaic (PV) power generation has made considerable 

developments in recent years. But its intermittent and 

volatility of its output has seriously affected the security 

operation of the power system. In order to better understand 

the PV generation and provide sufficient data support for 

analysis the impacts, a novel generation method for PV power 

time series combining decomposition technique and Markov 

chain theory is presented in this paper. It digs important 

factors from historical data from existing PV plants and then 

reproduce new data with similar patterns. In detail, the 

proposed method first decomposes the PV power time series 

into ideal output curve, amplitude parameter series and 

random fluctuating component three parts. Then generating 

daily ideal output curve by the extraction of typical daily data, 

amplitude parameter series based on the Markov chain Monte 

Carlo (MCMC) method and random component based on 

random sampling respectively. Finally the generated three 

parts are recombined into new PV power time series by the 

decomposition formula.  Data obtained from real-world PV 

plants in Gansu, China validates the effectiveness of the 

proposed method. The generated series can simulate the basic 

statistical, distribution and fluctuation characteristics of the 

measured series. 

1 Introduction 

The world has been seeing dramatic development of solar 

energy in recent years due to its sustainability. The global 

new PV installed capacity further increased in 2016, reached 

70GW, an increase of about 30% over 2015. The intermittent 

and volatility of PV power output have become an important 

factor affecting the stability of power system[1-3]. To analyse 

the impacts of large amount of PV integration, bulk data of 

PV generation is necessarily required. However, for newly 

installed PV plants, there is insufficient data for system level 

analysis. PV power time series generation is an effective 

method to solve the insufficient data problem. Time series 

generation refers extract the internal patterns from the 

measured power series and then use the extracted patterns to 

generate new power series which is well consistent with the 

measured series in statistical and fluctuating features. 

 

The magnitude of the PV output depends on how much solar 

radiation is received. The change of solar radiant energy has 

both obvious regularity and unpredictable randomness. In [4], 

the sun-earth movement model is established, and the daily 

solar radiation energy curve can be calculated according to 

latitude, longitude and altitude. However, this model ignores 

temperature, climate and other factors, thus there is a certain 

cap between the calculated results and the measured PV 

output. In [5-6], the short term and mid-long term stochastic 

properties of solar power generation are analysed and 

provides some reference for the generation of PV power time 

series.  

 

In general, studies on the PV power time series generation 

can be divided into two categories, namely solar radiation 

method[7-8] and solar power method[9-11]. The solar radiation 

method first generates solar radiation intensity series and then 

uses the radiation-electric power conversion function to 

estimate power output. This method requires high accuracy of 

the radiation-electric power transfer function. There could be 

significant difference between the generated PV power series 

and the measured ones. The solar power method refers to 

generating new PV power time series directly using the actual 

measured data. In [9] the whole day is divided into multiple 

periods to model the PV output separately. [10] uses the 

Gibbs sampling technique to construct time series model of 

PV output. The empirical model of PV output based on the 

measured data is established in [11]. The solar power method 

showed above cannot describe the regularity of daily PV 

output accurately. In summary, the existing methods of 

generating PV power time series are still inadequate in the 

description of regularity and randomness of PV output. 

Combining the advantages of the two kinds of methods is 

urgently needed. 

 

In this paper, a novel generation method for PV power series 

combining the decomposition technology and Markov chain 

theory is proposed. And the effectiveness of the method is 

verified by the time series from real-world PV plants. 



2 Decomposition of PV power time series 

components 

In general, the output of PV plants is mainly affected by three 

aspects. (1) Earth rotation movement and the movement 

between the sun and the earth. They make regular changes in 

solar radiation. (2) Atmospheric attenuation, which affects the 

solar radiation intensity received by the solar panels. (3) 

Cloud disturbance. The shadowing effect of clouds will bring 

random component to the PV output. Thus, the PV output 

power is decomposed into three parts according to the 

following formula. 

      norm randP t k P t P t     (1) 

where P(t) is the PV output power, k is amplitude parameter, 

Pnorm(t) is ideal PV output and Prand(t) is random fluctuating 

component. 

2.1 Ideal output curve extraction 

Ideal PV output is the daytime output of PV plants without 

regard to atmospheric attenuation and cloud disturbances. The 

ideal output curve calculated using the theoretical model[4,13] 

always maintains the sinusoidal characteristic. But the actual 

output in the morning and in the afternoon is often not 

symmetrical. Therefore, this paper considers the use of the 

ideal output curve extraction method instead of the theoretical 

model calculation method. The extraction method consists the 

following steps: 

 

(1) Select typical days. Using the absolute value of the 

second-order difference of PV output to determine whether 

the day is a typical day, as shown in the following formula. 

 +2 1 +1max ( ) ( )t t t tx x x x D      (2) 

In the formula, xt represents the PV output at time t of one 

day and D is the critical threshold. If the inequality is satisfied, 

the day is a typical day. In this paper, D is 10% of the 

installed capacity of PV plants. 

 

(2) Normalize the PV output. Due to the difference of 

maximum daily PV output, sunrise and sunset moments, it is 

needed to normalize PV output to extract the shape of ideal 

output curve. Using the maximum PV output value of the day 

for the standard unit and normalizing the time span. The PV 

output curve of typical day after the standardization is shown 

in Figure 1. 
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Figure 1: Normalized PV output of typical day. 

 

(3) Formulate analytical equation of PV output curve of 

typical days. As the different lengths of daily output, the 

standard unit time of the sampling points is also different after 

normalization. Thus, it is necessary to obtain the PV output 

analytical equations of typical days. We use the fast Fourier 

transform (FFT) and keep the first five harmonics to achieve 

the resolution. 

2.2 Generating ideal output curve of atypical days 

The ideal output curve of atypical days needs to be generated 

by the linear interpolation method of the ideal output curve of 

typical days near its timing. Using the following formula to 

calculate the ideal output of atypical days. 

      * * *
, , ,i norm m norm n norm

n i i m
P t P t P t

n m n m

 
 

 
  (3) 

where i represents an atypical day; t* is the normalized time; 

Pi,norm(t*) is the normalized ideal PV output of ith day at 

normalized time t*; m and n are the nearest typical days 

before and after the ith day.  

 

After obtaining the normalized ideal PV output of typical and 

atypical days, it is necessary to convert the normalized time 

into the actual time. Using the geographical information of 

PV plants and date order, we can calculate sunrise and sunset 

moments of every day in the location of the PV plants. The 

daytime of PV output can be calculated by 

 day ss sr
i i iT T T    (4) 

day
iT is the daytime of ith day; ss

iT and sr
iT represent the 

sunset and sunrise moments of ith day respectively. So t* in 

the normalized ideal PV output of ith day can be converted 

into t through the following formula. 

 * day
it t T    (5) 

According to the above steps, we can get the ideal PV output 

Pnorm(t) of all days during the study period. 

2.3 Calculation of amplitude parameters  

Pnorm(t) reflects the shape of PV output curve when there is no 

cloud disturbance. Its amplitude range is [0, 1]. In practice, 

the peak value of daily PV output is affected by many factors, 

including solar radiation peak of atmospheric upper bound, 

atmospheric attenuation and so on. But these factors basically 

do not affect the shape of ideal PV output curve. In this paper, 

the amplitude parameter is used to characterize these factors. 

The amplitude parameter is calculated using the least square 

method, as shown in equation (6). 

 
2

,

1

min ( ) ( )
i

N

i i i norm
k

t

P t k P t


  
   

  
   (6) 

In the equation, i represents the date; ki is the corresponding 

amplitude parameter; N represents the number of PV data 

sampling points in one day. Making weekly timing curve of 

an actual PV power plant and the corresponding amplitude 

parameter series, as shown in Figure 2. 

2.4 Random component of PV output 

The random component mainly reflects cloud disturbance. 

According to formula (1), random component can be obtained 
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Figure 2: Weekly timing curve and amplitude parameter series 

 

by the measured PV output series subtracting the ideal PV 

output which amplified by amplitude parameter. The random 

component is shown in Figure 3 
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Figure 3: A schematic diagram of the decomposition of the PV 

output 

 

In [7] ， it is pointed out that the stochastic fluctuation 

component of the PV output satisfies the t-location scale 

(TLS) distribution. The fluctuation of PV output is 

intermittent and has a certain degree of continuity, as shown 

in Figure 3. 

 

The feature is described using duration distribution in this 

paper. Duration is the time which the PV output remains 

smooth or fluctuating[14]. Its distribution refers to the 

probability distribution of the duration of different lengths. 

When the value of a sampling point of random component is 

greater than 0.1pu, it can be assumed that PV output enters 

the fluctuating state and record the duration of its continuous 

fluctuation. When the value is less than 0.1pu and maintains 

two or more sampling points long, PV output can be 

considered to enter the smooth state. Recording the length of 

time that it continues to be smooth. The probability 

distribution and parameters can be determined according to 

the duration of the fluctuating and smooth state. 

 

Using the measured data and Matlab toolbox dfittool, we 

found that the inverse Gaussian distribution (IGD) is suitable 

for describing the duration distribution of the fluctuating part 

and smooth part. 

3 Generation Method for PV power time series 

Using the above-mentioned ideal output normalization curve 

extraction method of typical days and generation method for 

ideal output normalization curve of atypical days. We can get 

the ideal output curve for every day in the study period. The 

ideal output normalization curve can be considered only 

related to the date, so it is fixed and unique. In the following, 

we generate the random series of the amplitude and the 

random component and then combine them with the ideal 

output normalization curve to obtain the generated PV power 

time series. 

3.1 MCMC based generation method for amplitude 

parameter series 

Markov Chain Monte Carlo method is a stochastic simulation 

method which takes the interaction between the various states 

of the system into consideration. Assuming that the value of 

the discrete random variable xt is time-dependent, and t 

belongs to a discrete time set T. The whole possible value of 

xt is a discrete state set S, and S={s1, s2, s3,…}. If the 

conditional probability of xt is satisfied 

 
 

 

1 1 1 1 2 2

1 1

    | , ,...,

|

t t t t

t t t t

P x s x s x s x s

P x s x s

 

 

   

  
  (7) 

It is said that the random variable xt with Markov quality[12]. 

 

The transition probability matrix P is of size N×N, and N is 

the number of states that the random variable may achieve. 

The value of each element pij in the matrix P represents the 

conditional probability 

  +1 |ij t tp P x j x i     (8) 

 

This paper considers MCMC method for generating 

amplitude parameter series. Firstly, obtaining the magnitude 

of the amplitude parameter range corresponding to each state 

according to equation (9). 

 max
0

k
k

N
   (9) 

In the equation, kmax is the maximum value in the amplitude 

series, N is state division number and k0 is the size of the 

range of amplitude parameters represented by each state. In 

this paper, the division number N is 4, representing rainy days, 

partly cloudy days, cloudy days and sunny days four weather 

conditions. If an amplitude parameter kt satisfies the range 

constraint 

   0 01 ,       1, 2,...,tk i k i k i N       (10) 

It is assumed that kt corresponds to state i. Performing state 

transition for each value in the amplitude parameter series to 

get the corresponding amplitude parameter state series. 

 

We can generate matrix P based on the state series according 

to equation (8). The cumulative transition probability matrix 

Pcum is further calculated according to the equation (11). 

    
1

, ,
j

cum

m

P i j P i m


   (11) 

Then generating initial state randomly and using the Pcum 

matrix and Monte Carlo method to generate a new state series 

with length tr. tr is the length of the amplitude parameter 

series to be generated. The flow chart of generating new state 

series is shown in Figure 4. 



Make t=1 and generate the initial state i randomly

t>tm?

If Pcum(cs, j-1)<u Pcum(cs, j)，
The state of next moment is considered to be j

t=t+1

N
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Generate random numbers v obeying the 

uniform distribution of 0-1

Current state cs=i

Current state cs=j

End

Start

 
Figure 4: The flow chart of generating new state series. 

 

Finally, generating random variables which satisfy the 

distribution within the corresponding range of each state to 

convert the discrete state series into a series of consecutive 

random variables. The steps of generating the amplitude 

parameter value from the state value is described in a concrete 

example. Assuming that the range of amplitude parameter 

represented by a state is (0.2kmax, 0.3kmax], the specific 

generating steps are as follows: 

 

(1) Calculating the CDF values for each amplitude 

parameter point of the original series in the range of (0.2kmax, 

0.3kmax], as shown in equation (12). 
 

    
 

 max max0.2 ,0.3

n a x
F x P a x

N k k


     (12) 

In the equation a represents the sample points in the range of 

(0.2kmax, 0.3kmax]; x represents a sample value in the range of 

(0.2kmax, 0.3kmax]; n(a≤ x) is the number of sample points less 

than or equal to x in the range of (0.2kmax, 0.3kmax]; N(0.2kmax, 

0.3kmax] is the total number of sample points in the range of 

(0.2kmax, 0.3kmax].  

 

(2) Generating a random number u which is distributed 

in [0,1] uniformly and compares it with the CDF value 

obtained in step (1). 

 

(3) If the random number u is equal to the value of a 

certain F(xi), xi is the generated value. If u is not equal to any 

values of F(x), then u must belong to a certain interval 

[F(xi),F(xi+1)]. F(xi) is the value of F(x) which is less than u 

and closet to u. F(xi+1) is the value of F(x) which is greater 

than u and closet to u. Taking xi+1 as the amplitude parameter 

generation value at that time. 

 

For the other amplitude parameter range, follow the steps 

above to generate specific values. 

3.2 The random component generation with considering 

the duration 

The random component is randomly generated according to 

the result of the parameter fitting. Therefore, it is necessary to 

calculate the TLS fitting parameters of its probability 

distribution, the IGD fitting parameters of the duration of the 

smooth and fluctuating parts based on the random component 

separated from the measured data. Then following the flow 

chart 5 to generate the random component series of specified 

length. On this basis, the output before sunrise and after 

sunset is replaced with zero. We can get a complete random 

component series.  

Giving the total length of  random component 
series to be generated L, the currently generated 

series length l=0

N

Y

Extracting a value Ng 
according to the IGD of 

the gentle part

Start

Generating the initial state randomly, st=0 or 1

st = 0?

l >L?

Adding Ng zero values to 
the generated series l=l+Ng 

Extracting a value Nf 
according to the IGD of 

the fluctuating part

Extracting Nf values 
according to the TLS 

distribution randomly and 
adding them to the 

generated series  l=l+Nf 

st=1 st=0

Y

N

End  
Figure 5: The flow chart of generating random component. 

3.3 Method of generating PV output series 

Based on the above method, we can generate required length 

of the ideal output normalization curve, amplitude parameter 

series and random component series respectively. Then we 

can combine them into complete PV output series according 

to formula (1). This method is used to generate PV output for 

1th PV power plant based on the measured data. The output 

of measured series and generated series of a week are shown 

in Figure 6.  
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Figure 6: Comparison of the output curves. 



It can be seen that the generated series curve is well shaped to 

preserve the characteristics of the original series curve, inherit 

the exact sunrise and sunset moments, while reflecting the 

intermittent characteristics of PV output. 

4 Simulation and verification 

4.1 Data source 

This paper uses the output data of six PV power plants in 

Gansu, China to carry out simulation test. The basic 

information of the PV power plants is shown in appendix 

Table A1. The length of generated series is equal to the 

original series length. 

4.2 Comparison of statistical characteristics 

(1) Basic statistical characteristics 

 

The basic statistical characteristics of PV output series 

include average and variance. Figure 7 shows the basic 

statistical characteristics of measured and generated series. In 

the Figure, the light column represents the measured series 

and the dark column represents the generated ones. It can be 

seen that the generated series well inherits the basic statistical 

properties of the measured series. 
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(a)  Average                                  (b) Variance 

Figure 7: Comparison of the basic statistical properties. 

 

(2) PV output distribution 

 

PV output distribution is one of the most basic statistical 

properties to measure the quality of PV output series 

generation. Introducing the Kolmogorov-Smirnov test (KS 

test)[15] to compare whether the two sets of random variables 

are subject to the same distribution. The KS test actually 

calculates the maximum vertical distance D between the two 

sets of CDF curves and compares it with the critical values at 

a given significant level. If the D value is less than the critical 

value, the two sets of random variables can be considered to 

be subject to the same distribution. 

 

This paper considers significant levels of 1-α=0.999. The 

comparison of the CDF curves of the measured series and the 

generated series of 1th PV power plant is shown in Figure 8.  

 

It can be seen from Figure 8 that the CDF curve of the 

measured series and the generated series are almost 

coincident, indicating that the fitting effect of generated series 

for PV output distribution is excellent. It can be seen from the 

results in Table A2 that all test PV plants pass the KS test. 

The validity of generated series fitting distribution of the 

measured series is showed further. 
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Figure 8: PDF curves of the measured and generated series. 

 

(3) Fluctuation characteristics of different time scales 

 

The fluctuation characteristics of different time scales are the 

distribution of active power change in the PV output series at 

different time steps. For example, the 30min level fluctuation 

characteristics is the amount of active power change between 

two sampling points separated by 30min. In this paper, 30min, 

1h, 2h and 4h are selected as different time scales for 

analysing. The KS test is used to determine the effect of the 

generated series fitting the measured series. The four time-

scale fluctuation characteristics of the 1th PV power plant are 

shown in Figure 9. In the Figure 9, the blue solid line 

represents the fluctuation series of the measured data and the 

red dotted line represents the fluctuation series of the 

generated data. It can be seen from the figure that the fitting 

degree of fluctuation characteristics at different time scales 

are relatively high. The generated series can well inherit the 

fluctuation characteristics of the measured series. The validity 

of the method fitting fluctuation characteristics of the 

measured series is fully demonstrated by the results of KS test 

in Table A3. 
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Figure 9: Comparison of CDF curves of fluctuating series. 

5 Conclusion 

In order to better understand the PV generation and  provide 

sufficient data support for system operators, a novel 

generation model for PV power time series combing 

decomposition technology and Markov chain is proposed in 



this paper. The following conclusions can be drawn from this 

work. 

 

(1) The PV power time series can be decomposed into 

ideal output normalization curve, amplitude parameter series 

and random fluctuating component. These three parts 

correspond to regular changes in solar radiation, atmospheric 

attenuation and cloud disturbance respectively. 

 

(2) The generation method for amplitude parameter 

series based on MCMC method can simulation the 

distribution of the original amplitude parameter series, thus 

reflecting the weather situation. 

 

(3) The power time series generated by the method 

presented in this paper can well inherit the characteristics of 

the measured series, including average, variance, cumulative 

distribution and fluctuation characteristics. 
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Appendix 

No. Power plants name Cap/MW length Interval 

1 

2 

3 

4 

5 

6 

CECEPChangMa 

CECEPSDaTan 

CPInterJingTai 

CPInvestWuwei 

CPInvestJingTai 

QSJinTa 

10 

20 

50 

50 

10 

3 

52128 

52128 

52128 

52128 

52128 

52128 

5min 

5min 

5min 

5min 

5min 

5min 
 

Table A1：The basic information of PV power plants 

 

No KS values Critical values 

1 

2 

3 

4 

5 

6 

0.0168 

0.0194 

0.0204 

0.0158 

0.0210 

0.0171 

0.0210 

0.0210 

0.0210 

0.0210 

0.0210 

0.0210 
 

Table A2: KS values of PV output distribution curves 

 

No 30min 1h 2h 4h Critical values 

1 

2 

3 

4 

5 

6 

0.0205 

0.0189 

0.0166 

0.0191 

0.0208 

0.0204 

0.0068 

0.0160 

0.0142 

0.0104 

0.0210 

0.0198 

0.0123 

0.0160 

0.0173 

0.0132 

0.0203 

0.0197 

0.0131 

0.0190 

0.0176 

0.0123 

0.0153 

0.0155 

0.0210 

0.0210 

0.0210 

0.0210 

0.0210 

0.0210 
 

Table A3: KS values of different time scales fluctuation 

characteristics curves 


