Asymptotic Performance Bound on Estimation and Prediction of Mobile MIMO-OFDM Wireless Channels

Ramoni. O. Adeogun
Wireless Communication Networks (WCN) Section,
Department of Electronics Systems,
Aalborg University, Aalborg, Denmark
Email: dradeogun01@gmail.com

Abstract—In this paper, we derive an asymptotic closed–form expression for the error bound on extrapolation of doubly selective mobile MIMO wireless channels. The bound shows the relationship between the prediction error and system design parameters such as bandwidth, number of antenna elements, and number of frequency and temporal pilots, thereby providing useful insights into the effects of these parameters on prediction performance. Numerical simulations show that the asymptotic bound provides a good approximation to previously derived bounds while eliminating the need for repeated computation and dependence on channel parameters such as angles of arrival and departure, delays and Doppler shifts.

Index Terms—MIMO-OFDM, channel estimation, interpolation, prediction, Cramer–Rao bound, multipath channel

I. INTRODUCTION

The development of algorithms for the prediction of MIMO–OFDM channels [1]–[11] to mitigate performance degradation resulting from feedback delays in adaptive and limited feedback MIMO-OFDM systems has received considerable attention in recent times. In the design of these algorithms, the ability to compute the lower bound on the estimation and prediction error performance as a function of the channel and system parameters is essential in order to make appropriate design decisions. Moreover, these bounds serve as a basis upon which the performance of the different algorithms can be compared. However, there exist no closed–form expressions relating MIMO–OFDM channel estimation, interpolation and prediction performance to predictor design parameters such as number of antennas, number of samples in the observation segment, number of pilot subcarriers, number of paths and SNR.

In [12], closed–form expressions for the prediction error in SISO–OFDM channels were derived. Bounds on the interpolation of MIMO–OFDM channels were derived in [13] using a vector formulation of the Cramer–Rao bound for a function of parameters. Similar bounds for estimation and prediction were proposed in [14], [15]. Although these bounds are useful in their own way, their expressions are not easily interpretable. Moreover, their dependence on channel parameters necessitates averaging over several realizations of the channel resulting in high computational load particularly for large numbers of samples and antenna elements. An asymptotic expression for the bound on the prediction of narrowband MIMO channels was derived in [16].

In this contribution, we derive simple, readily interpretable closed–form expressions for the error bound on MIMO–OFDM channel prediction in the asymptotic limit of large number of samples and/or antennas. The bounds are applicable to pilot based channel estimation, interpolation and prediction. The dependence of these bounds on system parameters, but not on channel parameters, enables them to provide useful insight into system design considerations.

II. CHANNEL MODEL

We consider a wideband ray–based MIMO channel model defined as [17, p. 43]

$$H(t, \tau) = \sum_{z=1}^{Z} \alpha_z a_r(\mu_z^r) a_t(\mu_z^t) e^{j\omega_z \tau} e^{j\delta(t - \tau_z)}$$

(1)

where Z is the number of paths, α_z and ω_z are the complex amplitude and radian Doppler frequency of the zth path and τ_z is the delay of the zth path. $a_r(\mu_z^r)$ and $a_t(\mu_z^t)$ are the receive and transmit array response vectors associated with the zth path, respectively, while μ_z^r and μ_z^t are the angular frequencies associated with the angles of arrival and departure of the zth path, respectively. Note that while (1) is valid for all antenna geometries, we will consider a uniform linear array (ULA) such that $a_r(\mu_z^r)$ is defined as

$$a_r(\mu_z^r) = [1, e^{-j\mu_z^r}, e^{-j2\mu_z^r}, \ldots, e^{-j(N-1)\mu_z^r}]^T$$

(2)

with $\mu_z^r = 2\pi\delta_z \sin \theta_z$, N is the number of receive antenna elements, δ_z is the inter element spacing of the receive array and θ_z is the angle of arrival of the zth path. The transmit array response vector, $a_t(\mu_z^t)$, is analogously defined by replacing N with M and μ_z^r with μ_z^t in (2). The frequency response of the channel is obtained via the Fourier transform of (1) as

$$H(t, f) = \sum_{z=1}^{Z} \alpha_z a_r(\mu_z^r) a_t^T(\mu_z^t) e^{j(\omega_z f - 2\pi f \tau_z)}$$

(3)

1It should be noted that although the carrier frequency, f_c, may be included in the delay term as in [14], it is omitted here since it only result in a shift in the phase of each path.
where \(f \) denotes the frequency variable. We assume that channel parameters are stationary over the region of interest and that no two paths share the same parameter set \(\{ \alpha_z, \mu_z^1, \mu_z^2, \omega_z, \tau_z \} \) but two or more paths may share any subset of the parameter set. Assuming that the system has perfect sample timing and a proper cyclic extension, the sampled frequency response can be expressed as

\[
H(p, q) = \sum_{z=1}^{Z} \alpha_z u_z(\mu_z^2) a_z^T(\mu_z^1) e^{j(p\omega_z - q\eta_z)}
\]

(4)

where \(p \) and \(q \) denote the sample and subcarrier index, respectively, \(\omega_z = \Delta f \omega_z \) and \(\eta_z = 2\pi \Delta f \tau_z \) are the normalized Doppler frequency and normalized delay, respectively for symbol period \(\Delta f \) and subcarrier spacing \(\Delta f \). We assume that there are \(Q \) equally spaced pilot subcarriers in every OFDM symbol and that \(P \) equally spaced pilot symbols are available for the estimation, interpolation and/or prediction. Let \(U_f = \lfloor N_a/Q \rfloor \) and \(U_t = \lfloor N_pilot/P \rfloor \) denote the frequency spacing (measured in number of subcarriers) between adjacent pilot subcarrier and temporal spacing (in number of OFDM symbols) between adjacent pilot symbols, respectively. \(N_a \) is the total number of used subcarriers and \(N_{pilot} \) is the number of OFDM symbols in the training segment. In order to avoid frequency and time domain aliasing, \(U_f \) and \(U_t \) are chosen such that \(\Delta f U_f \leq 1 \) and \(2\Delta f U_t \leq 1 \) [18], where \(\Delta f_{\text{max}} \) and \(\omega_{\text{max}} \) are the maximum path delay and Doppler frequency, respectively. We denote the frequency and time indices of the pilots as \(q' = q U_f \); \(q = 0, 1, 2, \ldots, Q - 1 \) and \(p' = p U_t \); \(p = 0, 1, 2, \ldots, P - 1 \). We represent entry \((n, m)\) of (4) as

\[
h(n, m, p, q) = \sum_{z=1}^{Z} \alpha_z e^{j(p\omega_z - (n-1)\mu_z^2 - (m-1)\mu_z^1 - q\eta_z)}
\]

(5)

for all \(n = 1, \ldots, N \), \(m = 1, \ldots, M \) and \(p = 0, \ldots, P - 1 \). We assume that for the purpose of channel estimation, interpolation and/or prediction, \(P Q \) samples of the channel frequency response are known either from channel estimation or measurement. In practice, the channel estimates contain an error resulting from noise and interference, which we model as a summation of the true channel and a noise term [13]

\[
h(n, m, p, q) = \hat{h}(n, m, p, q) + w(n, m, p, q)
\]

(6)

where \(w \sim \mathcal{CN}(0, \sigma^2) \). We will henceforth remove the indices in parenthesis and denote \(h(n, m, p, q) \) as \(h \).

III. Asymptotic Error Bound

We now derive a simple and easily interpretable closed-from expression for the lower bound on prediction mean square error (MSE) in the asymptotic case of large \(N \), \(M \) and/or \(Q \). We have that estimation, interpolation or prediction are based on estimation of the parameters of the channel using the available pilot channels followed by estimation, interpolation or prediction for the desired frequency or time location using the estimated parameters. Let the channel parameter vector be denoted as

\[
\Theta = [\theta_1, \theta_2, \cdots, \theta_Z]
\]

(7)

where

\[
\theta_z = [\rho(\alpha_z \ J(\alpha_z) \ \mu_z^1 \ \mu_z^2 \ \nu_z \ \eta_z]
\]

(8)

\(\rho(\cdot) \) and \(J(\cdot) \) denote the real and imaginary parts of the associated complex number, respectively. Since our model represents a non-linear function of the channel parameters, the mean square error bound (MSEB) can be found using the Cramer–Rao lower bound (CRLB) for functions of parameters [19]

\[
\text{MSEB}(p, q) = \frac{\sum_{n=1}^{N} \sum_{m=1}^{M} \frac{\partial h}{\partial \Theta} [J(\Theta)]^{-1} \frac{\partial h}{\partial \Theta}^H}{\sigma^2}
\]

(9)

where \(\text{MSEB}(p, q) = E[(\hat{h}(p, q) - h(p, q))^H(\hat{h}(p, q) - h(p, q))] \). \(J(\Theta) \) is the Jacobian in (9) is given by

\[
\frac{\partial h}{\partial \Theta} = \left[\frac{\partial h}{\partial \theta_1} \frac{\partial h}{\partial \theta_2} \cdots \frac{\partial h}{\partial \theta_Z} \right]
\]

(10)

J(\Theta) is the Fisher information matrix (FIM), entries of which can be evaluated element-wise using Bangs formula [19].

\[
[J(\Theta)]_{ij} = Tr \left[C^{-1} \frac{\partial C}{\partial \Theta_i} C^{-1} \frac{\partial C}{\partial \Theta_j} + 2\Re \left(\frac{\partial h^H}{\partial \Theta_i} C^{-1} \frac{\partial h}{\partial \Theta_j} \right) \right]
\]

(11)

where \(C \) is the noise covariance matrix. We assume that the estimation noise is Gaussian such that \(C = \sigma^2 I \), and thus (11) can be reduced to

\[
[J(\Theta)]_{ij} = \frac{2}{\sigma^2} \Re \left(\sum_{n=0}^{N-1} \sum_{m=1}^{M} \sum_{n=1}^{N} \sum_{m=1}^{M} \frac{\partial h}{\partial \Theta_i} \frac{\partial h}{\partial \Theta_j}^H \right)
\]

(12)

Following straightforward derivation, the partial derivatives with respect to each of the parameters can be shown to be

\[
\frac{\partial h}{\partial \rho(\alpha_z)} = e^{j(p\omega_z - (n-1)\mu_z^2 - (m-1)\mu_z^1 - q\eta_z)}
\]

(13)

\[
\frac{\partial h}{\partial J(\alpha_z)} = je^{j(p\omega_z - (n-1)\mu_z^2 - (m-1)\mu_z^1 - q\eta_z)}
\]

(14)

\[
\frac{\partial h}{\partial \mu_z^2} = -j(n-1)\alpha_z e^{j(p\omega_z - (n-1)\mu_z^2 - (m-1)\mu_z^1 - q\eta_z)}
\]

(15)

\[
\frac{\partial h}{\partial \mu_z^1} = -j(m-1)\alpha_z e^{j(p\omega_z - (n-1)\mu_z^2 - (m-1)\mu_z^1 - q\eta_z)}
\]

(16)

\[
\frac{\partial h}{\partial \nu_z} = j\mu_z^1 e^{j(p\omega_z - (n-1)\mu_z^2 - (m-1)\mu_z^1 - q\eta_z)}
\]

(17)

\[
\frac{\partial h}{\partial \eta_z} = -j\mu_z^2 e^{j(p\omega_z - (n-1)\mu_z^2 - (m-1)\mu_z^1 - q\eta_z)}
\]

(18)

\footnote{Note that although the noise variance \(\sigma^2 \) can also be included as an element of \(\Theta \), it is omitted here since this does not affect the expression for the prediction error bound.}
Using (12) and (13)–(20) and performing some simplifications, the FIM submatrix corresponding to the zth path is obtained as
\[
[J(\theta_z)] = \frac{NMPQ}{\sigma^2} K \tag{19}
\]
with
\[
K = \begin{bmatrix}
2 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{2K^2}{Z} & \frac{N}{2} & -2P_{U_1} & 2P_{U_2} \\
0 & 0 & \frac{N}{2} & \frac{M^2}{2} & -2P_{U_1} & 2P_{U_2} \\
0 & 0 & -2P_{U_1} & \frac{M^2}{2} & 2P_{U_2} & -2Q_{U_1} \\
0 & 0 & -2P_{U_1} & -2P_{U_2} & 2Q_{U_1} & 2Q_{U_2} \\
0 & 0 & 0 & M_{QU_1} & 0 & 0 \\
0 & 0 & 0 & 0 & M_{QU_2} & 0 \\
\end{bmatrix} \tag{20}
\]
where we have assumed that P, Q, N and/or M are large.

Similar to [14], [15] we assume that the complex amplitude is $\alpha_z = \mathcal{CN}(0, 1)$, such that $\mathbb{E}[|\alpha_z|^2] = 1$ and $\mathbb{E}[\Re(\alpha_z)] = \mathbb{E}[\Im(\alpha_z)] = 0$. Using the structure of (19), the inverse of the FIM submatrix is given by
\[
[J(\theta_z)]^{-1} = \frac{\sigma^2}{NMPQ} K^{-1} \tag{21}
\]
where K^{-1} is the inverse of K given by
\[
K^{-1} = \begin{bmatrix}
\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{60}{18\pi^2} & \frac{18}{18\pi^2} & \frac{18}{18\pi^2} & \frac{18}{18\pi^2} \\
0 & \frac{60}{18\pi^2} & \frac{18}{18\pi^2} & \frac{18}{18\pi^2} & \frac{18}{18\pi^2} \\
0 & \frac{18}{18\pi^2} & \frac{18}{18\pi^2} & \frac{18}{18\pi^2} & \frac{18}{18\pi^2} \\
0 & \frac{18}{18\pi^2} & \frac{18}{18\pi^2} & \frac{18}{18\pi^2} & \frac{18}{18\pi^2} \\
\end{bmatrix} \tag{22}
\]
Assuming that the scattering sources are uncorrelated, the FIM has a block diagonal structure
\[
[J(\Theta)] = \text{blkdiag}[J(\theta_1) | J(\theta_2) | \cdots | J(\theta_Z)] \tag{23}
\]
The variance of the parameter estimates are therefore bounded by the diagonal entries of (23). Due to the diagonal structure of the FIM and independence of the FIM submatrices on path parameters, the asymptotic mean square error bound (AMSEB) can be written as
\[
\text{AMSEB}(p, q) = \sum_{n=1}^{N} \sum_{m=1}^{M} \frac{\partial h}{\partial \Theta} [J(\Theta)]^{-1} \frac{\partial h}{\partial \Theta} H \tag{24}
\]
For our analysis, we define the signal-to-noise ratio (SNR) as $\text{SNR} = Z/\sigma_2^2$. Thus, at the same SNR, the noise variance for a Z-path channel is $\sigma_Z^2 = Z\sigma^2$, where σ^2 is the noise variance for a single path channel. Substituting (21) into (24) and performing some simplifications, we obtain
\[
\text{AMSEB}(p, q) = \frac{Z^2\sigma^2}{18PQ} \left[44 - \frac{36p}{P_{U_1}} + \frac{60p^2}{P^2U_1^2} \frac{36q}{Q_{U_1}} \\
+ \frac{60q^2}{Q^2U_1^2} \right] \tag{25}
\]
Based on the assumption of normally distributed complex amplitudes, it can be shown that for a Z-path channel $E[||\mathbf{H}||_F^2] = NMZ$ and the asymptotic normalized mean square error bound (ANMSEB) is obtained from (25) as
\[
\text{ANMSEB}(p, q) = \frac{Z\sigma^2}{18NMPQ} \left[44 - \frac{36p}{P_{U_1}} + \frac{60p^2}{P^2U_1^2} \frac{36q}{Q_{U_1}} \\
- \frac{60q^2}{Q^2U_1^2} \right] \tag{26}
\]
In this form, the ANMSEB provides useful insights on the effects of the number of antennas, number of frequency and time domain pilots, pilot spacing and SNR on the estimation, interpolation and prediction performance. The following observations can be made from (26):

- The subcarriers near the edge of the frequency band are less predictable than those near the centre.
- The NMSE grows linearly with an increasing noise variance σ^2 and number of propagation paths Z. This is intuitive and agrees with previous results that prediction becomes more difficult with increasing number of paths [20].
- The NMSE decreases with increasing number of antennas at either or both ends of the link. This is also intuitive since more structure of the channel is revealed by having more antennas.
- The contribution to the NMSE from the Doppler frequency (see (19),(26)) and delay estimation (see (20), (26)) lead to the p^2 and q^2 terms, respectively, demonstrating a quadratic increase with prediction horizon and with frequency. This shows the need to accurately estimate the Doppler frequency and path delays for spatial/temporal prediction and frequency domain interpolation, respectively.
- The contributions from the cross correlation of error terms involving the Doppler frequency lead to the negative linear term in p in (28), thus reducing the ANMSEB. A plausible explanation for this is that improved Doppler frequency estimates can be obtained from joint parameter estimation. A similar term is obtained from cross terms involving the delays.

IV. NUMERICAL SIMULATIONS

In this section, we study the effects of system parameters on the error bounds and compare the asymptotic bound in (25) with the results in [14], [15]. In order to be consistent with [14], [15], we consider the root normalized mean square error (RNMSE) defined as $\text{RNMSE} = \sqrt{\text{NMSE}}$. The bound is averaged over 1000 independent channel realizations. We consider a MIMO-OFDM system with bandwidth...
Fig. 1: Plot of RNMSE versus frequency and horizon (λ). The upper (blue) surface is the bound in [15] and the lower (red) surface is obtained using (26).

Fig. 2: Averaged RNMSE versus horizon (λ)

In the observation segment in Fig. 3 for different numbers of antenna elements at both ends of the link. We observe that the RNMSE decreases with increasing number of samples. This is intuitively satisfying since an increased number of samples leads to improved parameter estimation and hence to better prediction. It also shows that an increase in the number of transmit and/or receive antenna decreases the RNMSE.

Finally, we show the effects of the number of paths on RNMSE in Fig. 4. We observe the the RNMSE bounds increases with increasing numbers of paths. This agrees with previous observations that propagation channel with dense multipath are more difficult to predict [20].

V. CONCLUSION

We have derived simple, easily interpretable and insightful closed–form expressions for the lower bounds on the performance of channel estimation, interpolation and prediction for MIMO–OFDM systems. The bound is obtained using the vector formulation of the Cramer Rao bound for functions of parameters in the asymptotic limits of large frequency and time–domain training samples and number of antennas. The expressions provide useful insights into the effects of system design parameters such as the number of antennas, number of training pilots, noise level, number of paths and pilot spacing on the error performance and are independent of the actual channel parameters. Simulation results show that the asymptotic error bound provides a good approximation to previous formulations while eliminating the need for repeated computation.
Consider the expression for the FIM in (12) and assume that \(Q, P, N, \) and/or \(M \) are large such that
\[
\sum_{q=0}^{Q} \sum_{p=0}^{P-1} \sum_{n=1}^{N} \sum_{m=1}^{M} h \approx QPNM \mathbb{E}[h] \tag{27}
\]
Using (12) and (13), the diagonal entries of the FIM are obtained as
\[
\begin{align*}
[J]_{11} &= [J]_{22} = \frac{2QPNM}{\sigma^2} \tag{28} \\
[J]_{33} &= \frac{2}{\sigma^2} \left(MPQ \sum_{n=1}^{N} (n-1)^2 \mathbb{E}[|\alpha|^2] \right) \tag{29} \\
[J]_{44} &= \frac{2}{\sigma^2} \left(NPQ \sum_{m=1}^{M} (m-1)^2 \mathbb{E}[|\alpha|^2] \right) \tag{30} \\
[J]_{55} &= \frac{2}{\sigma^2} \left(NPQ \sum_{k=0}^{P-1} (pU_1)^2 \mathbb{E}[|\alpha|^2] \right) \tag{31} \\
[J]_{66} &= \frac{2}{\sigma^2} \left(NPQ \sum_{q=0}^{Q-1} (qU_1)^2 \mathbb{E}[|\alpha|^2] \right) \tag{32}
\end{align*}
\]
Using the identity
\[
\sum_{a=1}^{A} a^2 = \frac{A(A+1)(2A+1)}{6} \tag{33}
\]
and our assumption that the complex amplitude is \(\alpha_2 \sim \mathcal{CN}(0,1) \), (28) becomes
\[
\begin{align*}
[J]_{33} &= \frac{2}{\sigma^2} \left(\frac{MPQN(N-1)(2N-1)}{6} \right) \\
[J]_{44} &= \frac{2}{\sigma^2} \left(\frac{NPQM(M-1)(2M-1)}{6} \right) \\
[J]_{55} &= \frac{2}{\sigma^2} \left(\frac{NMPQ(P-1)(2P-1)U_2^2}{6} \right) \\
[J]_{66} &= \frac{2}{\sigma^2} \left(\frac{NMPQ(Q-1)(2Q-1)U_2^2}{6} \right) \tag{34}
\end{align*}
\]
Since \(N, M, Q, P > 1 \), the approximations \(A-1 \approx A \) and \(2A - 1 \approx 2A \) can be used to simplify (34) as
\[
\begin{align*}
[J]_{33} &= \frac{2}{\sigma^2} \left(\frac{2N^2}{3} \right) ; & [J]_{44} &= \frac{2}{\sigma^2} \left(\frac{2M^2}{3} \right) \\
[J]_{55} &= \frac{2}{\sigma^2} \left(\frac{2P^2U_1^2}{3} \right) ; & [J]_{66} &= \frac{2}{\sigma^2} \left(\frac{2Q^2U_1^2}{3} \right) \tag{35}
\end{align*}
\]
The off-diagonal entries of the FIM are obtained following the same procedure.

ACKNOWLEDGMENT

The author would like to thank Assoc. Prof. Paul D. Teal and Dr. Pawel A. Dmochowski at the School of Engineering and Computer Science, Victoria University of Wellington, New Zealand for their technical guidance, contributions and comments during the course of this research.