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Abstract—In this paper, we derive an asymptotic closed–
form expression for the error bound on extrapolation of doubly
selective mobile MIMO wireless channels. The bound shows the
relationship between the prediction error and system design
parameters such as bandwidth, number of antenna elements,
and number of frequency and temporal pilots, thereby providing
useful insights into the effects of these parameters on prediction
performance. Numerical simulations show that the asymptotic
bound provides a good approximation to previously derived
bounds while eliminating the need for repeated computation
and dependence on channel parameters such as angles of arrival
and departure, delays and Doppler shifts.

Index Terms—MIMO-OFDM, channel estimation, interpola-
tion, prediction, Cramer-Rao bound, multipath channel

I. INTRODUCTION

The development of algorithms for the prediction of

MIMO–OFDM channels [1]–[11] to mitigate performance

degradation resulting from feedback delays in adaptive and

limited feedback MIMO-OFDM systems have received con-

siderable attention in recent times. In the design of these

algorithms, the ability to compute the lower bound on the

estimation and prediction error performance as a function of

the channel and system parameters is essential in order to

make appropriate design decisions. Moreover, these bounds

serve as a basis upon which the performance of the different

algorithms can be compared. However, there exist no closed–

form expressions relating MIMO–OFDM channel estimation,

interpolation and prediction performance to predictor design

parameters such as number of antennas, number of samples in

the observation segment, number of pilot subcarriers, number

of paths and SNR.

In [12], closed–form expressions for the prediction error

in SISO–OFDM channels were derived. Bounds on the

interpolation of MIMO–OFDM channels were derived in

[13] using a vector formulation of the Cramer–Rao bound

for a function of parameters. Similar bounds for estimation

and prediction were proposed in [14], [15]. Although these

bounds are useful in their own way, their expressions are not

easily interpretable. Moreover, their dependence on channel

parameters necessitates averaging over several realizations of

the channel resulting in high computational load particularly

for large numbers of samples and antenna elements. An

asymptotic expression for the bound on the prediction of

narrowband MIMO channels was derived in [16].

In this contribution, we derive simple, readily interpretable

closed–form expressions for the error bound on MIMO–

OFDM channel prediction in the asymptotic limit of large

number of samples and/or antennas. The bounds are appli-

cable to pilot based channel estimation, interpolation and

prediction. The dependence of these bounds on system pa-

rameters, but not on channel parameters, enables them to

provide useful insight into system design considerations.

II. CHANNEL MODEL

We consider a wideband ray–based MIMO channel model

defined as [17, p. 43]

H(t, τ) =

Z∑
z=1

αzar(μ
r
z)a

T
t (μ

t
z)e

jωztδ(τ − τz) (1)

where Z is the number of paths, αz and ωz are the complex

amplitude and radian Doppler frequency of the zth path

and τz is the delay of the zth path. ar(μ
r
z) and at(μ

t
z) are

the receive and transmit array response vectors associated

with the zth path, respectively, while μr
z and μt

z are the

angular frequencies associated with the angles of arrival and

departure of the zth path, respectively. Note that while (1) is

valid for all antenna geometries, we will consider a uniform

linear array (ULA) such that ar(μ
r
z) is defined as

ar(μ
r
z) = [1 e−jμr

z e−j2μr
z · · · e−j(N−1)μr

z ]T (2)

with μr
z = 2πδr sin θz . N is the number of receive antenna

elements, δr is the inter element spacing of the receive array

and θz is the angle of arrival of the zth path. The transmit

array response vector, at(μ
t
z), is analogously defined by

replacing N with M and μr
z with μt

z in (2). The frequency

response of the channel is obtained via the Fourier transform

of (1) as1

H(t, f) =
Z∑

z=1

αzar(μ
r
z)a

T
t (μ

t
z)e

j(ωzt−2πfτz) (3)

1It should be noted that although the carrier frequency, fc may be included
in the delay term as in [14], it is omitted here since it only result in a shift
in the phase of each path.



where f denotes the frequency variable. We assume that

channel parameters are stationary over the region of inter-

est and that no two paths share the same parameter set

{αz, μ
r
z, μ

t
z, ωz, τz} but two or more paths may share any

subset of the parameter set. Assuming that the system has

perfect sample timing and a proper cyclic extension, the

sampled frequency response can be expressed as

H(p, q) =

Z∑
z=1

αzar(μ
r
z)a

T
t (μ

t
z)e

j(pνz−qηz) (4)

where p and q denote the sample and subcarrier index, re-

spectively. νz = Δtωz and ηz = 2πΔfτz are the normalized

Doppler frequency and normalized delay, respectively for

symbol period Δt and subcarrier spacing Δf . We assume that

there are Q equally spaced pilot subcarriers in every OFDM

symbol and that P equally spaced pilot symbols are available

for the estimation, interpolation and/or prediction. Let Uf =
�Nsc/Q� and Ut = �Npilot/P � denote the frequency spacing

(measured in number of subcarriers) between adjacent pilot

subcarrier and temporal spacing (in number of OFDM sym-

bols) between adjacent pilot symbols, respectively. Nsc is the

total number of used subcarriers and Npilot is the number of

OFDM symbols in the training segment. In order to avoid

frequency and time domain aliasing, Uf and Ut are chosen

such that ΔfτmaxUf ≤ 1 and 2ΔtωmaxUt ≤ 1 [18], where

τmax and ωmax are the maximum path delay and Doppler

frequency, respectively. We denote the frequency and time

indices of the pilots as q′ = qUf ; q = 0, 1, 2, · · · , Q − 1
and p′ = pUt; p = 0, 1, 2, · · · , P − 1, respectively. We

represent entry (n,m) of (4) as

h(n,m, p, q) =

Z∑
z=1

αze
j(pνz−(n−1)μr

z−(m−1)μt
z−qηz) (5)

for all n = 1, · · · , N , m = 1, · · · ,M and p = 0, · · · , P −
1. We assume that for the purpose of channel estimation,

interpolation and/or prediction, PQ samples of the channel

frequency response are known either from channel estimation

or measurement. In practice, the channel estimates contain an

error resulting from noise and interference, which we model

as a summation of the true channel and a noise term [13]

ĥ(n,m, p, q) = h(n,m, p, q) + w(n,m, p, q) (6)

where w ∼ CN (0, σ2). We will henceforth remove the

indices in parenthesis and denote h(n,m, p, q) as h.

III. ASYMPTOTIC ERROR BOUND

We now derive a simple and easily interpretable closed–

from expression for the lower bound on prediction mean

square error (MSE) in the asymptotic case of large N ,

M , P and/or Q. We assume that estimation, interpolation

or prediction are based on estimation of the parameters

of the channel using the available pilot channels followed

by estimation, interpolation or prediction for the desired

frequency or time location using the estimated parameters.

Let the channel parameter vector be denoted as2

Θ = [θ1,θ2, · · · ,θZ ] (7)

where

θz = [R(αz) I(αz) μr
z μt

z νz ηz] (8)

R(·) and I(·) denote the real and imaginary parts of the

associated complex number, respectively. Since our model

represents a non-linear function of the channel parameters,

the mean square error bound (MSEB) can be found using the

Cramer–Rao lower bound (CRLB) for functions of parame-

ters [19]

MSEB(p, q) =
N∑

n=1

M∑
m=1

∂h

∂Θ
[J(Θ)]−1 ∂h

∂Θ

H

(9)

where MSEB(p, q) = E[(ĥ(p, q) − h(p, q))H(ĥ(p, q) −
h(p, q))], J−1(Θ) is the CRLB on the variance of the channel

parameter estimates. The Jacobian in (9) is given by

∂h

∂Θ
=

[
∂h

∂θ1

∂h

∂θ2
· · · ∂h

∂θZ

]
(10)

J(Θ) is the Fisher information matrix (FIM), entries of

which can be evaluated element-wise using Bangs formula

[19],

[J(Θ)]ij = Tr

[
C−1 ∂C

∂Θi
C−1 ∂C

∂Θj

]
+2R

[
∂hH

∂Θi
C−1 ∂h

∂Θj

]
(11)

where C is the noise covariance matrix. We assume that the

estimation noise is Gaussian such that C = σ2I, and thus

(11) can be reduced to

[J(Θ)]ij =
2

σ2
R

(
Q−1∑
q=0

P−1∑
p=0

N∑
n=1

M∑
m=1

∂h

∂Θi

∂h

∂Θj

H
)

(12)

Following straightforward derivation, the partial derivatives

with respect to each of the parameters can be shown to be

∂h

∂R(αz)
= ej(pνz−(n−1)μr

z−(m−1)μt
z−qηz) (13)

∂h

∂I(αz)
= jej(pνz−(n−1)μr

z−(m−1)μt
z−qηz) (14)

∂h

∂μr
z

= −j(n− 1)αze
j(pνz−(n−1)μr

z−(m−1)μt
z−qηz)

(15)

∂h

∂μt
z

= −j(m− 1)αze
j(pνz−(n−1)μr

z−(m−1)μt
z−qηz)

(16)

∂h

∂νz
= jpUtαze

j(pνz−(n−1)μr
z−(m−1)μt

z−qηz) (17)

∂h

∂ηz
= −jqUfαze

j(pνz−(n−1)μr
z−(m−1)μt

z−qηz) (18)

2Note that although the noise variance σ2 can also be included as an
element of Θ, it is omitted here since this does not affect the expression
for the prediction error bound.



Using (12) and (13)–(20) and performing some simplifica-

tions, the FIM submatrix corresponding to the zth path is

obtained as

[J(θz)] =
NMPQ

σ2
K (19)

with

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0

0 2 0 0 0 0

0 0 2N2

3
NM
2

−NPUt
2

NQUf

2

0 0 NM
2

2M2

3
−MPUt

2

MQUf

2

0 0 −NPUt
2

−MPUt
2

2P2U2
t

3
−QPUtUf

2

0 0
NQUf

2

MQUf

2
−QPUtUf

2

2Q2U2
f

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(20)

where we have assumed that P , Q, N and/or M are large3.

Similar to [14], [15] we assume that the complex amplitude

is αz ∼ CN (0, 1), such that E[|αz|2] = 1 and E[R(αz)] =
E[I(αz)] = 0. Using the structure of (19), the inverse of the

FIM submatrix is given by

[J(θz)]
−1 =

σ2

NMPQ
K−1 (21)

where K−1 is the inverse of K given by

K−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

0 0 0 0 0

0 1
2

0 0 0 0

0 0 60
13N2

−18
13MN

18
13NPUt

−18
13NQUf

0 0 −18
13MN

60
13M2

18
13MPUt

−18
13MQUf

0 0 18
13NPUt

18
13MPUt

60
13P2U2

t

18
13PQUtUf

0 0 −18
13NQUf

−18
13MQUf

18
13PQUtUf

60
13Q2U2

f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

Assuming that the scattering sources are uncorrelated, the

FIM has a block diagonal structure

[J(Θ)] = blkdiag[J(θ1) J(θ2) · · · J(θZ)] (23)

The variance of the parameter estimates are therefore

bounded by the diagonal entries of (23). Due to the diagonal

structure of the FIM and independence of the FIM subma-

trices on path parameters, the asymptotic mean square error

bound (AMSEB) can be written as

AMSEB(p, q) =

N∑
n=1

M∑
m=1

∂h

∂Θ
[J(Θ)]−1 ∂h

∂Θ

H

(24)

For our analysis, we define the signal–to–noise ratio (SNR)

as4 SNR = Z/σ2
Z . Thus, at the same SNR, the noise variance

for a Z-path channel is σ2
Z = Zσ2, where σ2 is the noise

3It should be noted that P , Q, N and M do not all have to be large.
We only require NMPQ to be fairly large so that the approximation

NMPQE[g] ≈ ∑NMPQ
i=1 g holds.

4This definition is necessary in order to allow fair comparison of the
bound across channels with different number of paths

variance for a single path channel. Substituting (21) into (24)

and performing some simplifications, we obtain

AMSEB(p, q) =
Z2σ2

13PQ

[
44− 36p

PUt
+

60p2

P 2U2
t

− 36q

QUf

+
60q2

Q2U2
f

− 36qp

P 2U2
t Q

2U2
f

]
(25)

Based on the assumption of normally distributed complex

amplitudes, it can be shown that for a Z-path channel

E[||H||2F ] = NMZ and the asymptotic normalized mean

square error bound (ANMSEB) is obtained from (25) as

ANMSEB(p, q) =
Zσ2

13NMPQ

[
44− 36p

PUt
+

60p2

P 2U2
t

− 36q

QUf
+

60q2

Q2U2
f

− 36pq

QUfPUt

]
(26)

In this form, the ANMSEB provides useful insights on the

effects of the number of antennas, number of frequency

and time domain pilots, pilot spacing and SNR on the

estimation, interpolation and prediction performance. The

following observations can be made from (26):

• The subcarriers near the edge of the frequency band are

less predictable than those near the centre.

• The NMSE grows linearly with an increasing noise

variance σ2 and number of propagation paths Z. This is

intuitive and agrees with previous results that prediction

becomes more difficult with increasing number of paths

[20].

• The NMSE decreases with increasing number of an-

tennas at either or both ends of the link. This is also

intuitive since more structure of the channel is revealed

by having more antennas.

• The contribution to the NMSE from the Doppler fre-

quency (see (19),(26)) and delay estimation (see (20),

(26)) lead to the p2 and q2 terms, respectively, demon-

strating a quadratic increase with prediction horizon

and with frequency. This shows the need to accurately

estimate the Doppler frequency and path delays for

spatial/temporal prediction and frequency domain inter-

polation, respectively.

• The contributions from the cross correlation of error

terms involving the Doppler frequency lead to the neg-

ative linear term in p in (28), thus reducing the ANM-

SEB. A plausible explanation for this is that improved

Doppler frequency estimates can be obtained from joint

parameter estimation. A similar term is obtained from

cross terms involving the delays.

IV. NUMERICAL SIMULATIONS

In this section, we study the effects of system parameters

on the error bounds and compare the asymptotic bound in

(25) with the results in [14], [15]. In order to be consistent

with [14], [15], we consider the root normalized mean

square error (RNMSE) defined as RNMSE =
√
NMSE. The

bound is averaged over 1000 independent channel realiza-

tions. We consider a MIMO-OFDM system with bandwidth



Fig. 1: Plot of RNMSE versus frequency and horizon (λ).

The upper (blue) surface is the bound in [15] and the lower

(red) surface is obtained using (26).
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Fig. 2: Averaged RNMSE versus horizon (λ)

B = 20MHz, number of subcarriers Nsc = 2048 and 64
equally spaced pilot subcarriers. We assume that the channel

is sampled at every symbol duration (Ut = 1). The complex

amplitudes are drawn from αz ∼ CN (0, 1), the angles of

arrival and departure are both chosen from a uniform distri-

bution as θrz, θ
t
z ∼ U [−π, π) and the Doppler frequencies are

generated from a spatial point of view as νz = 2πΔx sin θvz ,

where Δx is the spatial sampling interval in wavelengths

and θvz ∼ U [−π, π) is the angle between the direction of

travel of the mobile station and the receive antenna array.

The path delays are selected from the delays for the Urban

macro (UMA) scenario in the WINNER II/3GPP channel

[21]. We use Δx = 0.2 for our simulations.

Fig. 1 presents a plot of the asymptotic bound and the

bounds in [14], [15] for a two path channel with P = 100,

Q = 64, N = 2, M = 2 and SNR = 15 dB as a function

of frequency and horizon (in wavelengths). As seen from

the figure, the NMSE bounds increase quadratically in both

frequency and temporal horizon and the asymptotic bound

approximates the bound very closely.

In Fig. 2, we plot the RNMSE bounds averaged over

frequency versus prediction horizon at SNR = [0, 5] dB. We

observe that over the range considered, the maximum differ-

ence between the bounds in [14], [15] and our approximation

is only about 0.3 dB. As expected the bounds increase with

horizon but decreases with increasing SNR.

We plot the RNMSE bound versus the number of samples
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Fig. 3: Averaged RNMSE versus number of training samples.
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Fig. 4: Averaged RNMSE versus number of paths.

in the observation segment in Fig. 3 for different numbers of

antenna elements at both ends of the link. We observe that,

the RNMSE decreases with increasing number of samples.

This is intuitively satisfying since an increased number of

samples leads to improved parameter estimation and hence to

better prediction. It also shows that an increase in the number

of transmit and/or receive antenna decreases the RNMSE.

Finally, we show the effects of the number of paths on

RNMSE in Fig. 4. We observe the the RNMSE bounds

increases with increasing numbers of paths. This agrees with

previous observations that propagation channel with dense

multipath are more difficult to predict [20].

V. CONCLUSION

We have derived simple, easily interpretable and insightful

closed–form expressions for the lower bounds on the per-

formance of channel estimation, interpolation and prediction

for MIMO–OFDM systems. The bound is obtained using the

vector formulation of the Cramer Rao bound for functions

of parameters in the asymptotic limits of large frequency

and time–domain training samples and number of antennas.

The expressions provide useful insights into the effects of

system design parameters such as the number of antennas,

number of training pilots, noise level, number of paths and

pilot spacing on the error performance and are independent of

the actual channel parameters. Simulation results show that

the asymptotic error bound provides a good approximation to

previous formulations while eliminating the need for repeated

computation.



APPENDIX

Consider the expression for the FIM in (12) and assume

that Q, P , N , and/or M are large such that

Q−1∑
q=0

P−1∑
p=0

N∑
n=1

M∑
m=1

h ≈ QPNME[h] (27)

Using (12) and (13), the diagonal entries of the FIM are

obtained as

[J]11 = [J]22 =
2QPNM

σ2
(28)

[J]33 =
2

σ2

(
MPQ(

N∑
n=1

(n− 1)2)E[|αz|2]
)

(29)

[J]44 =
2

σ2

(
NPQ(

M∑
m=1

(m− 1)2)E[|αz|2]
)

(30)

[J]55 =
2

σ2

(
NPQ(

P−1∑
k=0

(pUt)
2)E[|αz|2]

)
(31)

[J]66 =
2

σ2

(
NPK(

Q−1∑
q=0

(qUf )
2)E[|αz|2]

)
(32)

Using the identity

A∑
a=1

a2 =
A(A+ 1)(2A+ 1)

6
(33)

and our assumption that the complex amplitude is αz ∼
CN (0, 1), (28) becomes

[J]33 =
2

σ2

(
MPQN(N − 1)(2N − 1)

6

)

[J]44 =
2

σ2

(
NPQM(M − 1)(2M − 1)

6

)

[J]55 =
2

σ2

(
NMQP (P − 1)(2P − 1)U2

t

6

)

[J]66 =
2

σ2

(
NMPQ(Q− 1)(2Q− 1)U2

f

6

)
(34)

Since N,M,Q, P > 1, the approximations A − 1 ≈ A and
2A− 1 ≈ 2A can be used to simplify (34) as

[J]33 =
NMPQ

σ2

(
2N2

3

)
; [J]44 =

NMPQ

σ2

(
2M2

3

)

[J]55 =
NMPQ

σ2

(
2P 2U2

t

3

)
; [J]66 =

NMPQ

σ2

(
2Q2U2

f

3

)
(35)

The off-diagonal entries of the FIM are obtained following

the same procedure.
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