A New Transferable Inter-Atomic Potential for Borosilicate Glasses
Wang, Mengyi; Smedskjær, Morten Mattrup; Mauro, John C.; Bauchy, Mathieu

Publication date:
2018

Citation for published version (APA):
A New Transferable Inter-Atomic Potential for Borosilicate Glasses

M. Wang¹; M. M. Smedskjaer²; J. C. Mauro³; M. Bauchy*¹

¹ University of California, Los Angeles, Civil and Environmental Engineering Department, USA ² Aalborg University, Denmark ³ Pennsylvania State University, USA

Molecular dynamics simulations of borosilicate glasses are notoriously challenging due to various coordination states exhibited by boron atoms, which can be 3- or 4-fold coordinated. Here, we present a new empirical force-field for modified borosilicate glasses. Although the potential retains a simple formulation (2-body interactions, fixed partial charges, constant parameters), it is found to offer an excellent transferability to a wide range of compositions, from silicate to borate glasses. The evolution of the coordination number of boron atoms upon varying glass compositions is well reproduced.