New Insights into the Condensation Kinetics and Structure of Sol-Gel Silicate Glasses

Du, T.; Smedskjaer, Morten Mattrup; Li, H.; Bauchy, Mathieu

Publication date:
2018

Citation for published version (APA):
New Insights into the Condensation Kinetics and Structure of Sol-Gel Silicate Glasses

T. Du¹; M. M. Smedskjaer²; H. Li¹; M. Bauchy³

1. Harbin Institute of Technology, School of Civil Engineering, China 2. Aalborg University, Department of Chemistry and Bioscience, Denmark 3. University of California, Los Angeles, Department of Civil and Environmental Engineering, USA

The sol-gel method is an attractive technique to synthesize homogeneous glasses with high purity while relying on lower processing temperatures than in the melt-quench method. The sol-gel method can also be used to synthesize unusual glasses that are likely to be inaccessible from direct quenching. However, the role of the composition and concentration of the sol-gel precursors remain unclear. Here, based on reactive molecular dynamics simulations, we investigate the sol-gel formation of calcium silicate glasses exhibiting various Ca/Si ratios. The structure of the obtained sol-gel glasses is compared to that of their isochemical melt-quenched counterparts. The role of the fraction of Ca cations on the condensation kinetics is discussed.