
 

  

 

Aalborg Universitet

MOODY User Manual

version 1.0.0

Palm, Johannes; Eskilsson, Claes

Creative Commons License
Unspecified

Publication date:
2018

Document Version
Other version

Link to publication from Aalborg University

Citation for published version (APA):
Palm, J., & Eskilsson, C. (2018). MOODY User Manual: version 1.0.0. Chalmers University of Technology,
Department of Mechanics and Maritime Sciences.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 19, 2024

https://vbn.aau.dk/en/publications/5523c0eb-9711-4331-89f2-bbd354b576ad


USER MANUAL
version 1.0.0

JOHANNES PALM
CLAES ESKILSSON

Department of Mechanics and Maritime Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2018
Contact information: johannes.palm@chalmers.se





CONTENTS

1 Introduction 1
1.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Installation procedure . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Debug tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The input file 5
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 General settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Time settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Cable types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Material models . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6.1 Common fields . . . . . . . . . . . . . . . . . . . . . . . 12
2.6.2 Available types . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Cable objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8.1 Common fields . . . . . . . . . . . . . . . . . . . . . . . 15
2.8.2 Available types . . . . . . . . . . . . . . . . . . . . . . . 15

2.9 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 17
2.9.1 Common fields . . . . . . . . . . . . . . . . . . . . . . . 17
2.9.2 Available modes . . . . . . . . . . . . . . . . . . . . . . 18

2.10 Ground models . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.11 API settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.12 Print settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.13 Numerical settings . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.14 Static solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iii



Contents

3 Running the code 23
3.1 User input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Post processing 25
4.1 Moody post . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 MATLAB routines . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Output file structure . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Use Moody as a mooring module 29
5.1 Introduction to the API . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Interface functions . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Input file entries . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Dynamic mooring restraint in OpenFOAM . . . . . . . . . . . . . 32
5.5 Fortran and MATLAB interface functions . . . . . . . . . . . . . 32
5.6 Test the API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

REFERENCES 33

A Theory manual 35
A.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . 35

A.2.1 Measures of strain . . . . . . . . . . . . . . . . . . . . . 36
A.2.2 Strain rate . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.2.3 Tension force . . . . . . . . . . . . . . . . . . . . . . . . 37

A.3 External forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.3.1 Added mass . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.3.2 Buoyancy . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.3.3 Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.3.4 Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.4 The Discontinuous Galerkin method . . . . . . . . . . . . . . . . 39
A.5 Time step schemes . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.6 Riemann solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.7 hp-adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.7.1 Error indicator . . . . . . . . . . . . . . . . . . . . . . . 42
A.7.2 Shock detection . . . . . . . . . . . . . . . . . . . . . . . 42
A.7.3 Adaptivity control . . . . . . . . . . . . . . . . . . . . . 42
A.7.4 Mesh refinement . . . . . . . . . . . . . . . . . . . . . . 43
A.7.5 p-adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.7.6 h-adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . 44

A.8 Limiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.9 API boundary conditions . . . . . . . . . . . . . . . . . . . . . . 46

iv



1
Introduction

1.1 GENERAL DESCRIPTION

Moody is developed as a module for computing cable dynamics. It is primarily
aimed at solving problems in marine applications. All examples in this manual are
therefore different types of mooring configurations for an offshore structure. This
manual aims to explain the usage of Moody as a stand-alone solver for mooring
dynamics, and as a plug-in module to hydrodynamic codes via the Moody API.
When using this version of moody for scientific purposes, please make sure to
cite:

1. J. Palm, C. Eskilsson, and L. Bergdahl. An hp-adaptive discontinuous
Galerkin method for modelling snap loads in mooring cables. Ocean Engi-
neering, 144:266–276, 2017

2. J. Palm. Mooring Dynamics for Wave Energy Applications. PhD thesis,
Chalmers University of Technology, 2017

Moody comes with a suite of MATLAB® scripts used for post-processing.
These are optional to use and are simply provided as a way of loading and process-
ing the output data from Moody. The output data format is presented in chapter
4.

In stand-alone mode, Moody is most easily operated though the terminal win-
dow. Automated batch runs are typically made through bash-scripting or any
other scripting language of choice. Alternatively, a MATLAB interface for run-
ning Moody is included in the post processing suite. The simulation is controlled
through an input file and standard flag-value pairs e.g. -f <fileName>. This
mode is used to make stand-alone, uncoupled simulations of cable dynamics.
Moody has an automated program interface (API) for coupling to external solvers,
e.g. for hydrodynamics. The setup is very similar to using Moody in stand-alone
mode with only minor changes to the input file.

1



1. Introduction

The present version of Moody is a discontinuous Galerkin finite element method
with high-order Legendre polynomial expansion bases. The formulation is in
conservative form, employing a local Lax-Friedrich type Riemann solver for the
numerical fluxes between the elements. For more information on the numerical
schemes and the equations of motion, the reader is referred to the theory manual.

Moody is a completely stand-alone c++ code with no dependencies apart from
the std-lib. It was originally prototyped in Matlab, which is why many input files
are labelled ’.m’ in the tutorials. This is not a requirement of Moody, and any
text-file format would serve well as input file for a simulation.

1.2 INSTALLATION PROCEDURE

Moody is shipped as a pre-compiled program suite. For installation on a Linux or
Apple architecture, simply use a terminal window to run the packed installation
script and agree to the licence agreement. Then source the appropriate environ-
ment variables for your architecture in moody-1.0.0-Linux/etc/. Ex:

./moody-1.0.0-Linux.sh;

source moody-1.0.0-Linux/etc/bashrcMoody

1.3 GETTING STARTED

For tests using the API please see the API description in ch. 5. This section simply
lists some examples of how to call Moody from the command line, and modify
the input file.

To run a 2.5 s simulation on the lindahl125.m input file, and place output one
level up, do:

cd $moodyDir/tutorials/catenaryValidation;
moody.x -f lindahl125.m -o ../catenaryResults -time.end 2.5

To run tests with two different mesh resolutions on a case, do:

moody.x -f inputFile -o N10 -addInput cable1.N 10

moody.x -f inputFile -o N20 -addInput cable1.N 20

To post process a case in Matlab, use readCase to load cable data into a Matlab-
structure. View tension propagation as a movie every tenth save timestep through
the moodyMovie function.

2



1.4. Debug tip

c=readCase(’oneDShockOutput’);

moodyMovie(’T’,c,c.t(1:10:end));

1.4 DEBUG TIP

If there are any problems running the software, a good starting point is to check
the output of the following commands (in a Linux environment):

echo $moodyPath
echo $moodyDir
which moody.x

ldd libmoody.so

echo $LD LIBRARY PATH

echo $PATH

3





2
The input file

2.1 OVERVIEW

An input file is used to setup the mooring system to be studied. An overview of
the required input data is given below.

General settings
Controls environmental aspects like fluid density and gravity. Individual
(top-level) keywords.

Time settings
Controls time step size, start and end time of simulation, etc. Grouped under
keyword time.

Vertices
Specifies the location and the number of vertices in the simulation. A top-
level array with key vertexLocations.

Cable types
Specify the cross-sectional and material parameters of a mooring cable.
Grouped for each type under keyword cableTypeX.

Cable objects
Specify cable properties like end-points, cable type and length. Grouped for
each cable under keyword cableObjectX.

Boundary conditions
Specify type and behaviour for all boundary conditions. Grouped for each
boundary under keyword bcX.

Ground settings
Specifies ground model type and characteristics. Grouped under keyword
ground.

5



2. The input file

API settings
When used as a mooring module, this contains API-specific information.
Grouped under keyword API.

Print settings
Print settings control the output format of Moody. Grouped under keyword
print.

Numerical settings
Numerical settings control the quadrature order of the simulation. Grouped
under keyword numSet.

Static solver
A way to relax the analytic initial conditions. Grouped under keyword
staticSolver.

The input file can have any text-file format, with or without extension. It
follows the format of a Matlab script, where each variable name is assigned a value
via the = sign, e.g. time.start = 5 will set the start time of the simulation to
5s. Multiply defined variables are allowed, but be aware that only the first instance
of a keyword will be used. Sub-structures and fields of information are assigned
through the . sign. The following sections describe each category of information
required to setup a Moody simulation.

2.2 GENERAL SETTINGS

The general settings control the simulation environment, such as gravitational ac-
celeration and number of dimensions, etc.

dimensionNumber

The input is 1, 2 or 3 and defines a 1D, 2D or 3D simulation inside Moody.
This is a compulsory input. All vector values in the input file must still be
set in 3D format. The input order of ALL vector values in the input file is
[x,y,z]. The values used are then extracted according to:

dimensionNumber=1⇒ 1D simulation in [x] only

dimensionNumber=2⇒ 2D simulation in [x,z] only

dimensionNumber=3⇒ 3D simulation in [x,y,z]

gravity (1)
Gravity

(
9.81[m/s2]

)
can be toggled on or off by input value 1 or 0.

waterLevel (inf) [m]
This refers to the still water level z-coordinate. Thus everything is assumed
to be submerged by default.

6



2.2. General settings

waterDensity (1000.0) [kg/m3]
The water density applies to all fluid below the water level.

airDensity (0.9) [kg/m3]
The air density applies to all fluid above the water level.

dimensionNumber = 2;

% Optional %

gravity = 1;

waterLevel = 0.0; % [m]

waterDensity = 1000.0; % [kg/m3]

airDensity = 1.0; % [kg/m3]

7



2. The input file

2.3 TIME SETTINGS

The required time settings are described in detail below.

time.start [s]
Start time of the simulation.

time.end [s]
End time of the simulation.

time.dt [s]
Time step size.

time.scheme (RK3)
A string specifying the choice of integration method. Choices are:

eulerFwd

The time step scheme is based on the simple 1st order Euler forward
method.

RK3

Third order explicit Runge-Kutta scheme. This is the default.

cfl

If present, it tells Moody to adapt the time step size of the simulation to
match a given fraction of the CFL condition of the local cable mesh. Typi-
cally cfl=0.9 works well for most applications, but in cases dominated by
ground a lower value might be needed for stability. If field cfl is present,
field dt is not used.

time.start = 0;

time.end = 10;

time.dt = 1e-4;

time.scheme= ’RK3’;

8



2.4. Vertices

2.4 VERTICES

Moody’s geometry definition is based on vertices that define points in three di-
mensional space. A vertex is needed to assign a physical location to any cable
or boundary condition object. The cell array (Matlab style) vertexLocations is
used for this purpose. It is important to note that all points must be written in 3D
coordinates, see the description of the dimensionNumber input in section 2.2.
The following example creates vertex 1 and 2 at points [0 0 -50] and [50 0 0]

respectively.

vertexLocations = {
1 [0 0 -50];

2 [50 0 0]

};

9



2. The input file

2.5 CABLE TYPES

A cable type is used to define the material properties of a cable. Hydrodynamic
coefficients, diameter, mass per meter and constitutive relations are all defined
here. When defining the actual cable objects, several objects can be of the same
cable type. It is analogous to buying a nylon rope, and cutting it into three pieces.
The nylon rope properties are contained in the cable type, and the three pieces
become three cable objects.
Cable types are defined as structures with a number following the key name
cableType, and fields specifying the properties. Several cable types can be spec-
ified in the same simulation (e.g. cableType1, cableType2, ...). The required
and optional fields of the cable type structure are described below.

diameter [m]
The diameter (nominal diameter in the case of chains) of the cable. If not
specified, the default value is computed from gamma0 and rho, assuming a
constant density in a circular cross-section.

gamma0 [kg/m]
The mass per meter of the cable. If not specified, the default value is com-
puted from diameter and rho, assuming a constant density in a circular
cross-section.

rho [kg/m3]
The density of the cable material. If not specified, the default value is com-
puted from diameter and rho, assuming a constant density in a circular
cross-section.

materialModel

The material model is a substructure of the cable type. It contains informa-
tion about the constitutive relations of the cable. See section 2.6 for detailed
info.

Optional (parenthesis indicates default value)

CDn (0)
The drag force coefficient in the normal direction of the cable.

CDt (0)
The drag force coefficient in the tangential direction of the cable.

CM or CMn (0)
The added mass coefficient of the cable in the normal direction of the cable.

CMt (0)
The added mass coefficient in the tangential direction of the cable.

10



2.5. Cable types

cableType1.diameter = 0.05;

cableType1.gamma0 = 1.5; % (default: rho*area)

cableType1.rho = 7800; % (default: gamma0/area)

cableType1.materialModel.type = ’bilinearCable’;

cableType1.materialModel.EA = 1e4;

% Optional %

cableType1.CDn = 1; % (default: 0)

cableType1.CDt = 0.1; % (default: 0)

cableType1.CM = 2; % (default: 0)

11



2. The input file

2.6 MATERIAL MODELS

The material model is a substructure of the cableType and contains the infor-
mation about the constitutive relation between axial force and strain in the cable.
Moody uses the cable elongation (δL/L0) as strain input to the force-strain rela-
tion.

2.6.1 Common fields

EA [N]
The mean axial stiffness of the cable. In nonlinear materials, this value is
used as an approximation when computing the initial condition of the cable
analytically.

type

A string specifying which available type to use. Each type has its own
additional input fields, described below.

xi(0) [Ns]
The linear internal damping coefficient of the material. The internal damp-
ing force is added to the tension force from the material type and is com-
puted as a linear strain-rate dependence as Tξ = ξ ε̇ .

2.6.2 Available types

type=biLinear

Computes the axial tension force of the cable according to Hooke’s Law,
but disallows compressive forces. Thus T = max(EAε, 0).

type=exponential

This type uses an exponential strain-force relation as:

T = max(0,K (eaε −1)) . (2.1)

Additional fields of input are:

K [N]
Basic stiffness. See eq. (2.1).

a

The growth-rate of the exponential function. See eq. (2.1).

type=polynomial

Implements strain-force relation as polynomial according to

T = max

(
0,

m

∑
i=1

Ciε
i

)
, (2.2)

12



2.6. Material models

where Ci is the polynomial coefficient of order i as defined by the C field
below. Additional fields of input are:

C [N]
A vector set of coefficients. First value is the linear coefficient, second
is the quadratic strain dependence and so forth. The length of the
vector specifies the order of the polynomial strain-force curve. Ex:
materialModel.C = [1.0e3 2.0e3 3.0e3 4.0e3];

13



2. The input file

2.7 CABLE OBJECTS

Cable objects are the main object type in Moody. It specifies a cable of a given un-
stretched length between two vertices. Naming convention following cableObject1,
cableObject2, etc. is used to define the cable objects in the input file.

typeNumber

The cable type number.

startVertex

The start vertex number of the cable. This will be used as s = 0, where s is
the unstretched cable coordinate from 0 to L.

endVertex

The end vertex number of the cable. This will be used as s = L, where s is
the unstretched cable coordinate from 0 to L.

length [m]
The unstretched length (L) of the cable. For some types of initial condition,
e.g. PreStrain, the field is unused and is overwritten by the computed
value.

IC

The IC field is a substructure that defines the initial conditions of the ca-
ble. There are several options for the type of initial conditions and they are
described in section 2.8.

N

The number of elements in the cable.

P

The polynomial order of the Legendre polynomial basis functions.

cableObject1.typeNumber = 1;

cableObject1.startVertex = 1;

cableObject1.endVertex = 2;

cableObject1.length = 100; % [m]

cableObject1.IC.type = ’PreStrain’;

cableObject1.IC.eps0 = 0.05; % [-]

cableObject1.N = 10;

cableObject1.P = 7;

14



2.8. Initial Conditions

2.8 INITIAL CONDITIONS

The initial conditions are specified individually for each cable object, as a sub-
structure of cableObject.

2.8.1 Common fields

type

A string specifying which available type to use. Each type has its own
additional input fields, described below.

2.8.2 Available types

type=PreStrain

The cable is set to a straight line between the two end points. The length
of the cable is recomputed based on the distance between the points and the
specified initial pre-strain. Gravity is not taken into account in this initial
condition.

eps0

The initial pre-strain of the cable. Input is dimensionless and can be
either a single value or a vector of values. If more than one value is
specified, the length of the vector must match the length of parts,
see below. Each part of the cable will then be given the matching
pre-strain.

parts (1.0)
The relative part of the cable subject to the strain specified in eps0.
The input is a vector of the same size as eps0 and the sum of all the
values must be 1. The values of parts relates to the unstretched length
fractions of the cable.

IC.type = ’PreStrain’;

IC.eps0 = [0.01; 0.02];

IC.parts = [0.5; 0.5];

type=CatenaryStatic

The cable is set to be an elastic catenary shape at rest. This option only
works in 2D and 3D, when gravity is turned on. Ground interaction is de-
tected analytically, so the cable is initially set to lie still exactly at the ground
level. No further input is required.

15



2. The input file

type=HalfSine

Halfsine type is an extension of type PreStrain. A sinusoidally varying
displacement is imposed on a pre-strained cable. The sinusoidal displace-
ment is in the vertical direction only.

amplitude (0) [m]
The amplitude of vertical displacement. When set to 0, the result is
the same as for type ’PreStrain’.

periods (0.5)
The number of sinusoidal periods to use along the cable.

eps0 (0.0)
The desired pre-strain in the cable before the sinusoidal displacement.
The input is a single value that is applied to the whole cable.

IC.type = ’HalfSine’;

IC.amplitude = 1; % [m]

IC.eps0 = 0.01;

% Optional %

IC.periods = 0.5;

16



2.9. Boundary Conditions

2.9 BOUNDARY CONDITIONS

In order for the FEM model to work, the appropriate boundary conditions for the
problem must be applied. Boundary conditions are created through the input file
in the same structure.field way as other objects.

2.9.1 Common fields

There are several modes of boundary conditions, requiring different fields of input,
but some values are common for all.

type

The type describes if the boundary condition is governing the force (Neu-
mann condition) or the position (Dirichlet condition) of the point. The input
is either in string format as ’dirichlet’ or ’neumann’, or a 3 by 1 cell
array where the mode of each dimension is specified individually.

vertexNumber

Although several objects can be connected to the same vertex, each bound-
ary condition can only be applied to one. The input specifies the vertex
number to apply the boundary condition to.

startTime (startTime) [s]
When defined, the boundary value is held fixed at that of bcX.startTime
For t <bcX.startTime. The input is either a single value or a 3 by 1 vector
specifying the start time of each coordinate direction independently. It has
no effect on mode=’fixed’. The input is in [s] and the default value is the
same as the global start time of the simulation.

endTime (endTime) [s]
Defines the time at which the boundary condition stops to be active. For
t >bcX.endTime, the boundary value is held fixed at that of bcX.endTime.
The input is either a single value or a 3 by 1 vector specifying the end
time of each coordinate direction independently. It is not applicable to
mode=’fixed’. The input is in [s] and the default value is the same as
the global end time of the simulation.

rampTime (0) [s]
Dynamic boundary conditions are ramped up from static start time condi-
tions over a given time interval ∆τ=bcX.rampTime. The ramp factor Q is
defined as a function of τ = t−startTime as

Q = 0.5
(

sin
(

π
τ

∆τ
− π

2

)
+1
)
. (2.3)

dampTime (0) [s]
Analogous to rampTime for smoothly stopping the motion of a boundary
condition as the end time is approached.

17



2. The input file

mode

The input is a string specifying which of the implemented modes that will
be used. Each mode has its own additional input fields, both compulsory
and optional. They are described below.

2.9.2 Available modes

mode=fixed

The fixed mode is used to describe a stationary point / constant force.

value (vertexLocation alt. [0,0,0]) [m alt. N]
Specify the boundary condition value. If specified for dirichlet degrees
of freedom, this value has precedence over information in the vertex
location list.

mode=sine

This mode is used to generate sinusoidally varying values at the bound-
ary. The offset, amplitude, frequency and phase of the sine motion can be
specified for each coordinate direction. Scalar valued input is applied to all
directions.

amplitude ([0,0,0]) [m alt. N]
The amplitude of the sinusoidal excitation.

frequency ([0,0,0]) [Hz]
The frequency of oscillation.

phase ([0,0,0]) [deg.]
The phase of the excitation.

centerValue (vertexLocation alt. [0,0,0]) [m alt. N]
If defined it determines the offset around which the oscillation takes
place.

mode=externalPoint

This mode is used in MoodyAPI. It uses quadratic interpolation to generate
intermediate boundary conditions in between coupling times of the external
solver. In MoodyAPI, the type must be dirichlet, as the coupling is as-
sumed to control the motion of a vertex in Moody, and return a cable force
to the external solver. No further input is required in MoodyAPI. For stand-
alone Moody, a quadratic interpolation can be set using the following fields,
in combination with bc.startTime and bc.endTime:

startValue (vertexLocation alt. [0,0,0]) [m alt. N]
The start value defines the value of the boundary at the beginning of
the simulation.

18



2.9. Boundary Conditions

endValue (vertexLocation alt. [0,0,0]) [m alt. N]
The end value defines the value of the boundary at the endTime.

startVelocity ([0,0,0]) [m/s alt. N/s]
The initial rate of change of the boundary at startTime.

mode=externalRigidBody

MoodyAPI comes with a rigid body framework, where the position state of
a rigid body is used as input to the API, and where the total mooring forces
and moments are returned to the external solver. As in externalPoint,
only type=dirichlet is allowed for use with the API.

inputDoFs (6)
The value must be 6 or 7. If 7, the input values are interpreted as a
septernion. If 6, input is point position followed by radians of roll,
pitch and yaw respectively.

slaves

A list of vertices whose motions are governed by the rigid body.

slavePositions

A list of slave positions relative to the control point position of the
body (the vertexNumber of the BC). The order of the points corre-
spond to the order in which the slaves vertices are listed.

bc1.type = ’dirichlet’;

bc1.mode = ’sine’;

bc1.vertexNumber = 2;

bc1.amplitude = [1;0;1]; % [m]

bc1.frequency = [0.5;0;0.5]; % [Hz]

bc1.phase = [90;0;0]; % [deg]

% Optional %

bc1.centerValue = [0;0;0];

bc1.rampTime = 5; % [s]

bc1.startTime = 0;

bc1.endTime = 100;

19



2. The input file

2.10 GROUND MODELS

There is at present only one type of ground model implemented in Moody. The
springDampGround ground model is a combined linear spring and bilinear damper.
The contact force acting on each quadrature point of the cable from the ground is
a function of the penetration depth and the vertical velocity. Dynamic friction is
also included. The input parameters listed below refer to the equations stated in
the theory manual of appendix A.

type

The type field must be set to ’springDampGround’.

level

This sets the level of the ground in the global coordinate system. The ground
is assumed to be horizontal and thus have its normal vector aligned with the
global z-axis. Goes into (A.29) as z0.

stiffness [Pa/m]
The stiffness of the ground. Goes into (A.29) as K.

dampingCoeff (1)
The damping coefficient specifies the fraction of critical damping of the
ground. Energy is only dissipated during the penetration of the ground.
During the lifting phase, no vertical damping force is applied. The default
value is 1, meaning critical damping. Goes into (A.29) as ξ .

frictionCoeff (0)
This is the friction coefficient between any cable and the ground. Goes into
(A.30) as µ .

vc (0.001) [m/s]
The cut off speed for dynamic friction specifies the horizontal speed at
which the friction force reaches its full value. This is a numerical relaxation
of the friction force for the times when the cable is changing direction. Goes
into (A.30) as vµ .

ground.type = ’springDampGround’;

ground.level = -50; // ground.stiffness = 1e6;

% Optional %

ground.dampingCoeff = 1;

ground.frictionCoeff = 0.3;

ground.vc = 0.1;

20



2.11. API settings

2.11 API SETTINGS

See the API chapter ?? for information about API control parameters in the input
file.

2.12 PRINT SETTINGS

Print settings control the output folder content and format.

dt (time.dt) [s]
The time between each output time in the result directory.

mode (1)
The mode=1 prints all cable values in both modal and nodal space. mode=0
prints only modal coefficients. Use moodyPost.x to extract nodal output,
see chapter 4.

format (’bin’)
Moody prints in binary format by default. format=’txt’ or format=’ascii’
prints in ASCII format. Binary format is significantly faster and more effi-
cient for storage.

2.13 NUMERICAL SETTINGS

Numerical settings control the quadrature order of the simulations. The top-level
keyword is numSet.

qPointsAdded (2)
The number of quadrature points more than the polynomial order P, to use
in the simulation. Default is 2, meaning that Q = P+2 points will be used
in each element. Moody uses Gauss-Legendre-Lobatto quadrature which is
exact with P+2 points for the Legendre polynomial of order P. However, in
cases of nonlinear external forces (such as stiff ground interaction) a higher
value might be needed to sample the force properly.

2.14 STATIC SOLVER

The static solver (staticSolver) option enables a number of Euler fwd time
steps on. It is still a bit experimental and will probably develop during coming
updates. For now, options are:

relax (0)
Switch to 1 to enable the dynamic relaxation of the initial condition.

21



2. The input file

relaxFactor (0.9) Factor to scale the resulting cable velocity after each time
step.

maxIter (100) How many iterations (of timeSteps time steps each) to do. The
dynamics of the system is reset after each iteration.

timeSteps (100) How many time steps to take during 1 iteration.

22



3
Running the code

3.1 USER INPUT

Moody is operated though the terminal window. Generally, the -<flagName>

<value> syntax is used to provide run-time information to the computation. All
settings apart from the output file name prepends information in the input file.

3.1.1 Flags

-f (moodyInput.m)
Filename. Must be followed by the filename of the input file.

-o (input filename without extension)
Output filename. Must be followed by the name of the output folder.

-time.start

Specifies the start time of the simulation. Overrides information specified
in input file.

-time.end

Specifies the end time of the simulation. Overrides information specified in
input file.

-startState

This is the reboot flag of moody. If followed by a value, the value should be
an existing results folder name. If no value is specified, the default is to use
the output folder if it exists. Moody will start from the mooring state at the
start time of the simulation. If no results are found, Moody will start from
static equilibrium, and print a warning message.

23



3. Running the code

-addInput

A way to specify additional changes to the input file as value pairs: -addInput
<name1> <value1> <name2> <value2>. All information prepends the
input file and thereby overrides the information in the input file.

3.1.2 Examples

moody.x -f caseFile.m

moody.x -f moodyInput.m -o outFolder -time.start 10

-time.end 20 -addInput time.dt 0.01

24



4
Post processing

4.1 MOODY POST

Moody has a post-processing utility named moodyPost.x. Although nodal values
are printed to the output directory, moodyPost.x can be used to create a smaller
set of output data for post-processing. It can also be used to generate VTK-files of
the cable lines and their tension force magnitude for visualisation in e.g. Kitware’s
Paraview.

4.1.1 Usage

moodyPost.x is a command line tool. The first parameter must be a moody result
directory. Default is to process all times in output/time.dat. To control which
times to process and output there are three flag options.

-times

A list of output times.
Ex. moodyPost.x outName -vtk -times ’0,1,2,4.5’

-timeList

Use times from a file. File should be in a single row vector format with no
header.
Ex. moodyPost.x outName -vtk -timeList timeFile.txt

-dt [s]
Use time step size dt to step through the output history.
Ex. moodyPost.x outName -vtk -dt 0.5

There are further two output options:

25



4. Post processing

-vtk

Print VTK files in sub-directory VTK.
Ex. moodyPost.x moodyResults -vtk -times ’0,1,2,4.5’

-p

Print nodal values in sub-directory processed. Optional flag -var is used
to control which parameters to output. Default is to use all.

-var Should be followed by a list of integer values in 1 to 7, where

1. tension
2. strain
3. strain rate
4. position
5. velocity
6. tangent
7. end point values.

Ex. moodyPost.x moodyResults -p -var ’[1,4]’, prints tension
and position.

4.2 MATLAB ROUTINES

A set of Matlab routines and functions are provided in $moodyDir/post/matlab.
These can be used to load and visualise the results. Each cable result is analysed
separately. The most important routine is readCase.m which returns a cell array
of data structures containing the data of all cable objects. The following is an
excerpt from the help text of the main functions.
>> h e l p r e a d C a s e

r e a d C a s e i s used t o l o a d moody r e s u l t s i n t o an a r r a y o f d a t a s t r u c t u r e s .
I n p u t :

fo lderName : name of r e s u l t f o l d e r . ( d e f a u l t i s p r e s e n t d i r . )
v a r a r g i n : i s a l i s t o f v a r i a b l e s t o l o a d . O p t i o n s a r e

’ p ’ f o r p o s i t i o n ( nq by dim ) each t ime
’ v ’ f o r v e l o c i t y ( nq by dim ) each t ime
’ t a n ’ f o r t a n g e n t ( nq by dim ) each t ime
’T ’ f o r t e n s i o n ( nq by 1) each t ime
’ eps ’ f o r s t r a i n ( nq by 1) each t ime
’ epsR ’ f o r s t r a i n R a t e ( nq by 1) each t ime

Outpu t :
d : o u t p u t c e l l a r r a y where each c e l l i s a c a b l e s t r u c t u r e .

d . t c o n t a i n s o u t p u t t i m e s
Each v a r i a b l e f i e l d i s a nTimes by 1 c e l l .

>> h e l p p r o b e C a b l e
p r o b e C a b l e e x t r a c t d a t a a t p o i n t s or i n i n t e r v a l [ s0 , s1 ] s\ i n [0 1 ]
d i s f o r m a t t e d as o u t p u t from r e a d C a s e .

I f s P r ob e i s s i n g l e−v a l u e d : s P ro be i s an s−v a l u e \ i n [ 0 , 1 ] .
I f not an e x a c t match o f o u t p u t p o i n t , a l i n e a r i n t e r p o l a t i o n o f a l l
v a l u e s i s made .

26



4.3. Output file structure

I f s P r ob e = [ s0 s1 ] : sP r ob e s p e c i f i e s an s−r a n g e \ i n [ 0 , 1 ] . Th i s o p t i o n
works on ly f o r non−a d a p t i v e meshes .
o u t has t h e f i e l d s s p e c i f i e d below . I t c o n t a i n s on ly t ime h i s t o r i e s a t
t h e p o i n t s p e c i f i e d by s P ro be .

>> h e l p moody
moody Mat lab i n t e r f a c e t o run moody s t a n d a lone , i n s t e a d o f i n a t e r m i n a l .

I n p u t :
inputName : name of t h e i n p u t f i l e . ( i n c l u d i n g any ’ .m’ , ’ . t x t ’ i f a p p l i c a b l e )
v a r a r g i n : a comma−s e p a r a t e d l i s t o f ( key , v a l u e ) i n p u t o p t i o n s match ing t h e

t e r m i n a l f o r m a t .
For f u r t h e r i n f o r m a t i o n on usage , p l e a s e s e e t h e moody manual .

>> h e l p e n d P o i n t D a t a
e n d P o i n t D a t a g e t v a l u e s o f c a b l e e n d p o i n t s f o r c a b l e s t r u c t u r e d .
I n p u t :

d : c a b l e d a t a s t r u c t u r e as r e t u r n e d by r e a d C a s e .m
w i l l P l o t : sw i t ch t o p l o t t ime h i s t o r y o f t e n s i o n T ( : , end )

Outpu t :
ep : n T i m e s t e p s by 1+2*(3* dim +2) m a t r i x o f e n d p o i n t v a l u e s .
c o l H d r s : h e a d e r s o f each column i n t h e o u t p u t

>> h e l p moodyMovie
moodyMovie shows how p a r a m e t e r ” f i e l d ” e v o l v e s ove r t ime t .
movie i s s t o r e d as <d . name> f i e l d . mp4 i n t h e c u r r e n t d i r e c t o r y .

I n p u t :
f i e l d : name of f i e l d t o v ie rw .
d : c a b l e s t r u c t u r e . As o u t p u t from r e a d C a s e .m

O p t i o n a l i n p u t s a r e :
t : Ve c t o r o f p l o t t i m e s . D e f a u l t i s 1 f rame p e r saved t i m e s t e p
dims : [ i j ] (= [1 dim ] ) , i . e . which d i m e n s i o n s t o view .

[0 i ] means p l o t t i n g d imens ion i a g a i n s t t h e c a b l e c o o r d i n a t e s .
V a r a r g i n i n p u t can be :
’ f r ’ : f r a m e r a t e [ 1 / s ] , or
’ dur ’ : d u r a t i o n [ s ]

Example : moodyMovie ( ’ v ’ , d , d . t ( 1 : 1 0 : end ) , [ 0 3 ] , ’ dur ’ , 2 0 )

Views t h e t ime e v o l u t i o n o f t h e z−d imens ion of c a b l e v e l o c i t y
a l o n g t h e c a b l e c o o r d i n a t e a s a 20 s long movie wi th f r a m es
e v e r y 10 t h saved t i m e s t e p o f c a b l e s t r u c t u r e d .
d i s t h e o u t p u t o f d= r e a d C a s e ( ’ outputName ) ’ ) . See r e a d C a s e .m

>> h e l p g e t E l e m e n t D a t a
e l e m e n t V a l u e s c o l l e c t s t h e v a l u e s d a t e l e m e n t elNum .
n o t e : t h i s f u n c t i o n can on ly work on n o n a d a p t i v e meshes .

4.3 OUTPUT FILE STRUCTURE

The first column of each output file contains the time stamp of the output, t =
[t1, t2, . . . , tm]. This column is also printed to the time.dat file in the results di-
rectory. Thus all output data files have m number of rows. The values are then
presented along the unstretched cable coordinate s for each n output quadrature
points [s1,s2, . . . ,sn] of the cable. Output is separated into vector valued output
and scalar output. For scalars such as tension, strain and strain rate, the output

27



4. Post processing

Table 4.1: Output structure description for cable object data. Times are indexed
as t1, t2, . . . , tm, vector components as f = [ fx, fy, fz] and the cable un-
stretched coordinate s is indexed as s1,s2, . . . ,sn.

File suffix Output structure

position.dat

t1 x(t1,s1 : sn) y(t1,s1 : sn) z(t1,s1 : sn)
...

...
...

...

tm x(tm,s1 : sn) y(tm,s1 : sn) z(tm,s1 : sn)

velocity.dat

t1 vx(t1,s1 : sn) vy(t1,s1 : sn) vz(t1,s1 : sn)
...

...
...

...

tm vx(tm,s1 : sn) vy(tm,s1 : sn) vz(tm,s1 : sn)

tension.dat

t1 T (t1,s1 : sn)
...

...

tm T (tm,s1 : sn)

strain.dat

t1 ε(t1,s1 : sn)
...

...

tm ε(tm,s1 : sn)

sPlot.dat t1 s1 : sn

goes from the start to the end of the cable. For the vector valued output, such
as position and velocity, the data is stored consecutively for each coordinate di-
rection of the simulation, in the order x,y,z. The structure is described in table
4.1.

28



5
Use Moody as a mooring module

5.1 INTRODUCTION TO THE API

Moody is primarily designed to be used as a modular add-on for an external solver
for the fluid problem. When Moody is started up in API-mode the external solver
is guiding the time evolution of some of Moodys boundary conditions. The inter-
action between the codes is made as an information loop, see figure 5.1.
When the time step size of the external solver is larger than the internal time step

of Moody, a sub-stepping is performed. Moody interpolates in time between the
old and the new boundary values received. Quadratic interpolation with optional
time staggering is used. See [9] for more information on how different choices of
interpolation can affect the solution.

5.2 INTERFACE FUNCTIONS

The program interface is made up of three global functions:

(i) moodyInit - an initialisation routine;

(ii) moodySolve - to compute the mooring forces; and

(iii) moodyClose - to close the moody objects and clean the output files.

5.2.1 Description

The interface is contained in $moodyDir/include/moodyWrapper.h, together
with a description of all interface parameters required. The following is an excerpt
from moodyWrapper.h, showing the definition of the interface functions.

29



5. Use Moody as a mooring module

Figure 5.1: Schematic description of the information loop between Moody and
an external software, represented by an OpenFOAM CFD simula-
tion in this case.

/ * * I n i t i a l i s a t i o n c a l l t o moody . R e q u i r e d t o s e t u p t h e API .
P a r a m e t e r fName : i n p u t f i l e name ( i n c l u d i n g p a t h and e x t e n s i o n )
P a r a m e t e r nVals : number o f v a l u e s i n p a r a m e t e r i n i t i a l V a l u e s
P a r a m e t e r i n i t i a l V a l u e s : a r r a y o f i n i t i a l v a l u e s o f t h e boundary c o n d i t i o n s (

g l o b a l f rame )
P a r a m e t e r s t a r t T i m e : t ime a t s t a r t o f s i m u l a t i o n ( s )

* /
void moodyIn i t ( c o n s t char * fName , i n t nVals , double i n i t i a l V a l u e s [ ] , double

s t a r t T i m e ) ;

/ * * S o l v e s t h e i t n e r n a l sys tem of mooring dynamics between t ime t 1 and t 2 .
P a r a m e t e r X: Boundary c o n d i t i o n v a l u e s a t t ime t 2 .
P a r a m e t e r F : R e t u r n e d as t h e ou tward p o i n t i n g mooring f o r c e s f o r each

boundary c o n d i t i o n dof .
P a r a m e t e r t 1 : Time of l a s t c a l l , s t a r t t ime of t ime i n t e g r a t i o n .
P a r a m e t e r t 2 : End t ime of p r e s e n t t ime s t e p s i m u l a t i o n .

Note : t 1 and t 2 a r e s t o r e d i n t e r n a l l y , w i th c o r r e s p o n d i n g s t a t e s o f t h e
mooring dynamics . I f t 1 has i n c r e a s e d s i n c e t h e l a s t c a l l , moody w i l l
move f o r w a r d i n t ime and s t o r e t h e s t a t e a t t 1 as t h e new s t a r t i n g s t a t e
o f t h e mooring dynamics . S e v e r a l i t e r a t i o n s can be made wi th v a r y i n g t 2
b u t t h e same t 1 w i t h o u t l o o s i n g t h e backup s t a r t i n g s t a t e . Compa t ib l e
wi th p r e d i c t o r / c o r r e c t o r t y p e t ime s t e p p i n g schemes .

* /
void moodySolve ( c o n s t double X[ ] , double F [ ] , double t1 , double t 2 ) ;

/ * * C l o s e s t h e moody s i m u l a t i o n and s t o r e s d a t a f o r p o s t p r o c e s s i n g * /
void moodyClose ( ) ;

In principle all input files can be used to run an API simulation, but some
compulsory items are needed for the coupling to run smoothly.

5.3 INPUT FILE ENTRIES

Two modes of boundary condition are supported for control via the API: externalPoint
and externalRigidBody. See section 2.9 for information on their individual

30



5.3. Input file entries

setup. Other input file entries for the API are grouped under the API keyword.
The following fields are available to control the simulation behaviour, where some
are simply input-file versions of the command-line flags described in chapter 3:

bcNames

This is the only compulsory field of the API. It lists the boundary conditions
that are to be externally controlled. The order of the input tells Moody how
to interpret the input in the initialValues parameter of moodyInit and
in the X parameter in moodySolve. By extension it also controls the order
of the forces returned in parameter F in moodySolve.
Ex: API.bcNames = {’bc4’; ’bc5’; ’bc1’};

staggerTimeFraction (0.0)
Used to control the API time staggering for a smoother mooring behaviour.
Value α should be a scalar α ∈ [0,1], specifying a fraction of the latest time
step at which to stop the mooring simulation and return the mooring force.
Default is α = 0.0, but recommended value is α = 0.5. End time of each
coupling step is then computed from tend = (1−α)t2 +αt1.
Ex: API.staggerTimeFraction = 0.5

output (input file name)
The name of the Moody output directory of the simulation. Equivalent to
the -o flag.
Ex: API.output = ’moodyResults’

reboot (yes)
This flag controls the startup behaviour of Moody in API mode. Default
value is ’yes’ and tells Moody to attempt a reboot from a dynamic state
at time.start in the output directory. New output is then appended to
the previous results. To disable use of old results and start from static ini-
tial conditions, use API.reboot=’no’. If API.reboot takes any other string
value, this should be a result directory that can be used as a source state for
the simulation. The source directory is then unchanged by the simulation.
Ex: API.reboot = ’no’

syncOutput (0)
Integer value 0 or 1 allowed. If 1, Moody results are printed at each coupling
time (in addition to at each saveInterval). If 0, output is only printed
based on Moodys’ internal print.dt.
Ex: API.syncOutput = 1

31



5. Use Moody as a mooring module

5.4 DYNAMIC MOORING RESTRAINT IN OPENFOAM

Again, Moody was built for numerical simulation of the moored motion of wave
energy converters (WECs) and other offshore structures. The mooring dynamic
restraint on a floating body is an important part of the survivability and reliability
of the offshore installation. The original coupling of Moody to an external CFD
software was made with OpenFOAM [7] in 2013 [11] using a prototype Matlab
version of Moody. This coupling has been updated to compile with the v1712+
version of OpenFOAM. The source code is available in the thirdParty folder.
The details of required changes to the native code of OpenFOAM are presented
in changesMade.txt in order to ease migration of the restraint to other versions of
OpenFOAM.

In addition to the source code of the mooring restraint and the changes to the
motion library, there is in thirdParty/OpenFOAM a tutorial (mooredFloatingOb-
ject) on how to use Moody. It simulates mooring of the classical floating object
tutorial of OpenFOAM without the need of any motion constraints.

5.5 FORTRAN AND MATLAB INTERFACE FUNCTIONS

There is a Fortran module with interface functions to Moody, to facilitate cou-
pling to Fortran codes. There is also a Matlab API which allows for easy proto-
typing of coupled simulations from MATLAB. Both interfaces are located in the
thirdParty.

5.6 TEST THE API

Finally, there is also a testAPI.x program for testing a Moody api setup. The
following example simulates the mooringSystem.m run via the time series spec-
ified in the positions.txt file. The time series should be in simple text-file
format with no header line. The first column specifies the time, and the remaining
columns specify the values of each api input dof respectively. See the matlab api
tutorial for an example of positions.txt.

testAPI.x mooringSystem.m positions.txt

32



REFERENCES

[1] G. Barter and D. Darmofal. Shock capturing with PDE-based artificial viscosity for
DGFEM: Part i. Formulation. J. Comp. Phys, 229:1810–1827, 2010.

[2] P. Bernard. Discontinuous Galerkin methods for Geophysical Flow Modeling. PhD
thesis, Ecole polytechnique de Louvain, 2008.

[3] B. Cockburn and C.W. Shu. Runge-Kutta discontinuous Galerkin methods for
convection-dominated problems. J. Sci. Comp., 16:173–261, 2001.

[4] L. Krivodonova, J. Xin, J.-F. Remacle, N. Chevaugeon, and J. Flaherty. Shock detec-
tion and limiting with discontinuous Galerkin methods for hyperbolic conservation
laws. J. Appl. Num. Math., 48:323–338, 2004.

[5] J. Lindahl. Implicit numerisk lösning av rörelseekvationerna för en
förankringskabel. Technical Report Report Series A:11, Chalmers University of
Technology, 1984.

[6] J.R. Morison, M.P. O’Brien, J.W. Johnson, and S.A. Schaaf. The force exerted
by surface waves on piles. Petroleum Transactions, Amer. Inst. Mining Engineers,
186:149–154, 1950.

[7] OpenCFD Ltd. OpenFOAM Homepage, 2014. Available http://www.openfoam.org.

[8] Orcina Inc. OrcaFlex manual – version 9.5a, 2012.

[9] J. Palm. Mooring Dynamics for Wave Energy Applications. PhD thesis, Chalmers
University of Technology, 2017.

[10] J. Palm, C. Eskilsson, and L. Bergdahl. An hp-adaptive discontinuous Galerkin
method for modelling snap loads in mooring cables. Ocean Engineering, 144:266–
276, 2017.

33



REFERENCES

[11] J. Palm, C. Eskilsson, G. Paredes, and L. Bergdahl. CFD simulations of a moored
floating wave energy converter. In Proc. 10th European Wave and Tidal Energy
Conference, Aalborg, Denmark, 2013.

34



A
Theory manual

A.1 BACKGROUND

The present version of Moody is implemented as an hp-adaptive cable solver
based on the discontinuous Galerkin method with an approximate Riemann solver
of local Lax-Friedrich type. This manual outlines the governing equations and
highlights the modelling approach used in the implementation. This manual is
mostly compiled from Palm et al [10] where the present formulation was first
presented. In addition, the section on API boundary condition interpolation is
collected from the PhD thesis of Palm [9].

A.2 GOVERNING EQUATIONS

For a cable of length Lc, we use the unstretched cable coordinate s ∈ [0,Lc] to ex-
press the global coordinate position vector of the cable as r = [r1(s),r2(s),r3(s)]

T.
Under the assumption of negligible bending stiffness, the equation of motion be-
comes

γ0r̈ =
∂

∂ s

(
T t̂
)
+ f , (A.1)

t̂ =
∂r
∂ s

∣∣∣∣∂r
∂ s

∣∣∣∣−1

, (A.2)

where γ0 is the cable mass per unit length, T is the cable tension force magnitude,
t̂ is the tangential unit vector of the cable and f represents all external forces. For

notation we use ẋ =
∂x
∂ t

to indicate time derivatives and |x|=√xixi to denote the
L2 - norm of a vector quantity x, Vector components are denoted by their index as
xi, i ∈ [1,2,3], and summation over repeated indices is implied.

35



A. Theory manual

Written as a first order system in terms of the cable position r, its spatial

derivative q =
∂r
∂ s

and its momentum density ν = ṙγ0, eq. (A.1) becomes

ṙ =
ν

γ0
, (A.3)

q̇ =
∂

∂ s

(
ν

γ0

)
, (A.4)

ν̇ =
∂

∂ s

(
T t̂
)
+ f , (A.5)

where we have assumed that the cable mass is constant in time. In terms of a state
vector u = [r,q,ν ]T the conservative form of the problem is written as

u̇ =
∂F(u)

∂ s
+Q(u) , (A.6)

with a flux function

F(u) =
[

/0,
ν

γ0
,T t̂
]T

, (A.7)

and a non-linear source term

Q(u) =
[

ν

γ0
, /0, f

]T

. (A.8)

A.2.1 Measures of strain

Constitutive modelling in Moody is based on a strain-tension relation. We use the
elongation of the cable as a measure for the strain throughout the code. This is to
be most easily compatible with nonlinear strain-tension curves that originate from
physical experiments on cables. Therefore, it is assumed that input parameters to
material models are in accordance with this criteria. The elongation strain ε is
computed from

ε =
√

q ·q−1 , (A.9)

so that

|q|= 1+ ε , (A.10)

t̂ =
q

1+ ε
(A.11)

A.2.2 Strain rate

The strain rate is not formally included in the formulation. It is computed from

ε̇
(k) = q̇(k−1) · t̂(k) , (A.12)

36



A.3. External forces

where superscript (k) indicates at which time step the variable is evaluated. q̇(k−1)

thus means that the value from the last time step is used to approximate the strain
rate. For highly damped cables, a lower CFL condition might be needed to ensure
stability due to this approximation.

A.2.3 Tension force

The axial tension force is evaluated as T = T (ε, ε̇), for each material model im-
plemented. As an example, the bilLinear cable model has a truly linear relation
between T and ε , with the stiffness EA. There is no deviation from the linear curve
due to cross-sectional area diminishing for large strains, as that is assumed to be
inherent in the input relation between elongation and tension. Cross-sectional
area change due to strain is taken into account in the evaluation of the viscous
drag force on the cable, see section A.3.4.

A.3 EXTERNAL FORCES

The total external force f of eq. (A.1) is given by

f = fa + fb + fc + fd , (A.13)

where fa is the added mass and Froude-Krylov forces, fb is the net force of gravity
and buoyancy, fc represent contact forces, typically from sea-floor interaction, and
fd is the viscous drag force.

For notation, a vector quantity x can be expressed in a tangential and normal
component with respect to the cable tangent respectively as

xt̂ = x · t̂ , (A.14)
xn̂ = x−xt̂ . (A.15)

A.3.1 Added mass

The added mass effect on the cable dynamics is divided into a fluid part fa+ de-
pendent on the fluid acceleration, and an inertial part fa− which scales with the
cable acceleration,

fa = fa+− fa− . (A.16)

The added mass contributions are computed from Morison’s equations [6] using
coefficients CMn and CMt in the normal and tangential direction respectively.

fa+ = Acρ f

(
(1+CMn) v̇ f +(CMt−CMn) v̇ f t̂

)
, (A.17)

fa− =
Acρ f

γ0
(CMnν̇ +(CMt−CMn) ν̇t̂) , (A.18)

37



A. Theory manual

with ρ f as the fluid density and v f as the fluid velocity.
The inertial contribution is moved to the left hand side of eq. (A.5), effectively

changing it to

Ftot =
∂

∂ s

(
T t̂
)
+ f+ fa− , (A.19)

Ftot = ν̇ + fa− . (A.20)

The computation of ν̇ is then reduced to solving

Ftot =
[
aI+bt̂⊗ t̂

]
ν̇ = ψν̇ , (A.21)

a = 1+Acρ f
CMn

γ0
, (A.22)

b = Acρ f
CMt−CMn

γ0
, (A.23)

where I is the 3× 3 identity matrix, ψ is the added inertia matrix and ⊗ denotes
the open vector product. In effect, this is then handled as if ψ−1 was a relaxation
step on ν̇ for each computational node:

ν̇ = ψ
−1Ftot , (A.24)

and the inverse matrices ψ−1 are analytically obtained for each node as

ψ
−1 =

1
a(a+b)

(
(a+b)I−bt̂⊗ t̂

)
. (A.25)

A.3.2 Buoyancy

The buoyancy force is straightforward and computed from gravitational accelera-
tion g, the cable density ρc, the fluid density ρ f , and the cable mass γ0 as

fb = g
ρc−ρ f

ρc
γ0 . (A.26)

(A.27)

A.3.3 Contact

The implementation of the ground model has a potentially large influence on the
quality of the simulation. Moody supports contact forces from the ground based
on a bilinear spring and damper. The implementation is close to that used in [8].
A tangential friction model from [5] using dynamic friction is also implemented.
For a horizontal sea floor with (x,y,z) coordinates corresponding to vector index

38



A.4. The Discontinuous Galerkin method

1, 2 and 3 respectively, the contact force is computed as

fc =

{
Gv +Gh if (zG− rẑ)≥ 0 ,

0 otherwise ,
(A.28)

Gv =
(

KGdc (zG− rẑ)−2ξG
√

KGγ0dcmin(ṙẑ,0)
)

ẑ , (A.29)

Gh = µ fbẑ tanh
(

π ṙx̂y

vµ

)
ṙ− ṙẑẑ∣∣ṙx̂y

∣∣ (A.30)

where indices x̂y, and ẑ denote the horizontal and vertical projections of a vector
respectively. Further, rẑ is the vertical coordinate of the cable position, zG is the
vertical position of the ground, KG is the ground stiffness, ξG is the ratio of crit-
ical damping for the ground–cable pair. The coefficient of kinetic friction is in
eq (A.30) denoted as µ , with a corresponding velocity of maximum friction vµ .

Please note that to model the ground interaction as described in eq. (A.28),
we need the position of the cable r as an independent variable, which is why it is
included as an independent variable in eq. (A.3).

A.3.4 Drag

The viscous drag contribution is modelled via Morison’s formulas [6] for a cir-
cular cross-section with volume-preserving properties during axial strain. Hence,
the elongation factor (1+ ε) and the contraction factor (1+ ε) do not fully can-
cel. This is why the contraction factor for the diameter is (

√
1+ ε)−1, and fd is

expressed as

fD = 0.5ρ f dc
√

1+ ε
(
CDt
∣∣v∗t̂ ∣∣v∗t̂ +CDn|v∗n̂|v∗n̂

)
, (A.31)

where CDn, CDt are the drag coefficients of the normal and tangential direction,
and v∗ is the relative velocity between fluid and the cable:

v∗ = v f − ṙ . (A.32)

A.4 THE DISCONTINUOUS GALERKIN METHOD

The discontinuous Galerkin method is used for spatial discretisation of the cable
domain. Consider eq. (A.6) for a cable domain Ω of unstretched coordinate s ∈
[0,Lc]. Ω is discretised in a set of N elemental regions Ωe of mesh size he. In each
element a function y(s, t) is approximated as a Legendre polynomial of order p as

y(s, t)≈ ye(s, t) =
k=p

∑
k=0

φk(s)ỹe
k(t) , (A.33)

39



A. Theory manual

where ỹe
k is the kth expansion coefficient corresponding to the basis function of

order k, φk(s). The discontinuous Galerkin (DG) formulation of eq. (A.6) is then

(
φk,

∂ue

∂ t

)
Ωe

=

(
φk,

∂Fe

∂ s

)
Ωe

+(φk,Qe)
Ωe , ∀k ∈ [0, p] , (A.34)

using

(a(s, t),b(s, t))
Ωe =

∫
Ωe

a(s, t)b(s, t)ds , (A.35)

to denote the inner product operator on the elemental domain. The Gauss-Lobatto-
Legendre quadrature points and quadrature rules are used for numerical evaluation
of the elemental integrals in (A.35)

Two integration by parts of the weak derivative term
(

φk,
∂Fe

∂ s

)
Ωe

, allows eq.

(A.34) to be written

(
φk,

∂ue

∂ t

)
Ωe

=

(
φk,

∂Fe

∂ s

)
Ωe

+
[
φk

(
F̂e−Fe

)]se
U

se
L

+(φk,Qe)
Ωe , (A.36)

∀k ∈ [0, p]. Here se
U and se

L denote the elemental upper and lower bounds of the
unstretched cable domain coordinate s respectively. Please note the introduction
of the numerical boundary flux F̂e. As the elements are discontinuous at the ele-
ment boundaries, the numerical flux provides the coupling between neighbouring
elements.

Finally, separation of time and space dependence defined in eq. (A.33) allows
us to rewrite eq. (A.36) in terms of the modal coefficients of our polynomial
space:

(φk,φi)
∂ ũe

∂ t
=

(
φk,

∂φi

∂ s

)
F̃e +

[
φk

(
F̂e−Fe

)]se
U

se
L

+(φk,Qe)
Ωe (A.37)

∀k, i ∈ [0, p].

A.5 TIME STEP SCHEMES

We use the strong stability preserving 3rd order Runge-Kutta (RK) scheme as

described in [3] to advance eq. (A.6) in time. Let
˙u(i)
k = L

(
u(i)

k

)
, where u(i)

k is
the state vector at time step k and sub-cycle i. The 3rd order RK scheme is then

40



A.6. Riemann solver

u(0)
k+1 = uk ,

u(1)
k+1 = u(0)

k+1 +∆L
(

u(0)
k+1

)
,

u(2)
k+1 =

1
4

(
u(1)

k+1 +∆L
(

u(1)
k+1

))
+

3
4

u(0)
k+1 ,

u(3)
k+1 =

2
3

(
u(2)

k+1 +∆L
(

u(2)
k+1

))
+

1
3

u(0)
k+1 ,

uk+1 = u(3)
k+1 .

(A.38)

A.6 RIEMANN SOLVER

The numerical fluxes are central to the performance of the numerical scheme used
in Moody. The present version uses a local Lax-Friedrich type flux, with F̂e in
(A.37) evaluated as

F̂e = {Fe}+ |λ |max [[u
e]] on Γ ∈Ω . (A.39)

Notations {xe} and [[xe]] are

{xe}= 0.5
(
x++ x−

)
, (A.40)

[[xe]] = 0.5
(
n+x−+n−x+

)
, (A.41)

where x+ means taking the value from the internal side of the boundary and x−

from the neighbouring element. The normal vector n refers to the outward point-
ing normal, defined for each element boundary as n+ = −1 on se

L and as n+ = 1
on se

R. The maximum eigenvalue needed in eq. (A.39) is in this version chosen
for each equation as:

|λ |max =


0.8
∣∣∣ [[Fe]]
[[ue]]

∣∣∣ if u = q

|ct | otherwise

, (A.42)

where ct is the tangential wave speed in the cable. It is defined by the maximum
eigenvalue of the hyperbolic problem,

ct =

√
∂T
∂ε

γ0 . (A.43)

A.7 hp-ADAPTIVITY

The goal of the adaptive mesh refinement scheme is to limit the discretisation
error to below a pre-set tolerance level, ε∗. To do this we need an indicator of the
relative error, a smoothness indicator to let us know which type of error that we
observe, and a mechanism to efficiently adapt the spatial discretisation to best fit
the solution.

41



A. Theory manual

A.7.1 Error indicator

In this work, we use the tension force magnitude T as indicator variable for the
quality of the solution. For smooth solutions, we expect a convergence rate of
O
(
hp+1), but close to discontinuities the solution converges as O (h) [4]. The

elemental jump of the solution is a common measure of the numerical error [4, 2,
1]. Barter et al. [1] used the relative jump

τ =

∣∣∣∣ [[T ]]{T}

∣∣∣∣ ,
at element edges to indicate regions of shocks. We incorporate the relative jump
into Bernard’s formula for the relative error [2] to get

ε
e =

1√
8

√
(τe

L)
2 +(τe

R)
2 , (A.44)

with τe
L and τe

R as the relative jumps at the left and right elemental borders respec-
tively.

A.7.2 Shock detection

We follow Krivodonova [4] in order to decide on the nature of the error, i.e. locate
regions of sharp gradients or shocks. An intermediate convergence rate h0.5(p+1)

is used to establish a shock indicator of element e. Computing

Ie = max(τe
L,τ

e
R)h−0.5∗(p+1) , (A.45)

results in the shock criteria as Ie ≥ 1 [4]. When the cable goes slack (T → 0), a
snap load is expected to occur in the near future. We therefore treat it as a shock
criteria. Thus, we also introduce a low-tension criteria T ∗, that indicate shock
behaviour if min(T e) ≤ T ∗, with min(T e) evaluated at the quadrature points of
element e. The shock criteria and detectors are combined into the shock detecting
function Se as

Se =


1 if Ie ≥ 1 and εe ≥ ε∗

1 if min(T e)≤ T ∗

0 otherwise

. (A.46)

Please note that the jump-based shock detector is only applied to elements that
have errors higher than the tolerance level, while the low tension indicator is ap-
plied to all elements in the cable domain.

A.7.3 Adaptivity control

We let p-refinement have precedence over h-refinement in all elements of smooth
solution. If shocks are detected, the mesh is forced into maximum h-refinement

42



A.7. hp-adaptivity

and the order is reduced to linear approximation p = 1. h-refinement is restricted
to splitting elements in half and merging two equally sized elements with the same
parent. The initial mesh h-resolution is not allowed to coarsen, and the splitting
hierarchy of elements is therefore confined to one element of the initial mesh.

The inverse operation of coarsening the resolution follows the recipe of Bernard
[2], assuming the error relation between the new and the old mesh to be:

εe

ε∗
=

hp+1

h∗p∗+1 , (A.47)

where p∗ and h∗ denote the resolution parameters in the modified mesh. Thus, for
merging elements with constant order p, the criterion is: εe < 0.5p+1ε∗; and for
lowering the polynomial order under constant h, consequently: εe < hε∗. Com-
bining the above, we arrive at the hp-adaptive control algorithm

if Se = 1 : p = 1, h = hmin

if Se = 0 :


p = min(p+1, pmax) if εe ≥ ε∗

h = max(0.5h,hmin) if εe ≥ ε∗ and p = pmax

h = min(2h,hmax) if εe < 0.5p+1ε∗

p = max(p−1,1) if εe < hε∗ and h = hmax

,

where Se is the shock indicator function explained in eq. (A.46). The application
of the control algorithm to pure h is straightforward, as we simply skip the p-
adaptation parts. For pure p refinement, we skip the h-adaptation as well as the
shock detection step. The adaptive scheme is applied after a complete time step,
so that all stages of the Runge-Kutta scheme share the same spatial resolution.

A.7.4 Mesh refinement

The hp−adaptive mesh refinement in Moody is implemented in the following
way. First, let h be the non-dimensional element size, P be the polynomial order
of an element, and H denote the global level of h−refinement. For a given target
change in mesh with ∂H levels and ∂P orders, the mesh is changed according to

(i) p−refinement,

P = P+max(∂H,0) ; (A.48)

(ii) h−adaptivity, including splitting and merging of elements,

H = H +∂H ; (A.49)

(iii) p−coarsening,

P = P+min(∂H,0) , (A.50)

to avoid loss of accuracy.

43



A. Theory manual

A.7.5 p-adaptivity

We use the Legendre polynomials as hierarchic modal basis functions. Increasing
the polynomial order of an element is therefore reduced to simply padding the so-
lution vector ũi with 0 when P is increased. Conversely, p−coarsening is achieved
by truncating ũi at the target order.

A.7.6 h-adaptivity

In h−adaptivity, elements are added or removed dynamically as the solution pro-
gresses. Each element has two level flags used in to keep track of the h−refinement
hierarchy. A global level index IG and a local level index IL, controlled during
splitting and merging according to:

e→
(
e−,e+

)
I−G = I+G = IG +1

I−L = min(IL,0)−1

I+L = max(IL,0)+1

, (A.51)

(
e−,e+

)
→ e

{
IG = I+G +1 = I−G +1

IL = I−L + I+L
. (A.52)

Here we use notations − and + to denote the left and right child element respec-
tively. The prerequisites for allowing merging of two neighbouring elements who
both have been flagged for h−coarsening can now be simplified to

I−L < 0 , and I+L > 0 .

The global order flag is only used to avoid refinement beyond a pre-set maximum
limit and to keep track of the elemental size.

When an element is marked for h-refinement, it is divided in two equally
sized elements. Thus the local Gauss-Lobatto-Legendre (GLL) quadrature points
, ξ ∈ [−1,1], of the original parent element will always have the same relation to
the points of the two new child elements. This allows for a constant, pre-computed
split map matrix Ss between the modal values of the parent and its children. If su-
perscript − and + describe values in the left and right child elements respectively,
then

[
ũ−

ũ+

]
= Ss ũ , (A.53)

Let Sm2n, and Sn2m denote the mapping matrices between the modal solution and
the nodal values at the GLL points u of an element, i.e.

u = Sm2nũ = φ (ξ ) ũ ,

ũ = Sn2mu = M−1Wu ,

44



A.8. Limiters

where M−1 is the inverse mass matrix and W is the quadrature weighted φ T (ξ )
matrix. Here we use the matrix φ (ξ ) as a q by p+1 matrix where φi j contains the
value of basis j at quadrature point i. Then the splitting transform Ss is constructed
from

Ss =

[
Sn2m /0

/0 Sn2m

]
φ (ξs) , (A.54)

ξs =

[
0.5(ξ −1)

0.5(ξ +1)

]
, (A.55)

where ξs are the GLL points of the split elements projected on the local parent
domain.

The merging operation is the inverse of the splitting, but is computed as a
separate transform Sm. To avoid the ambiguous midpoint of the sibling elements,
the merge-matrix is based on an even number of quadrature points in the final
(parent) element. If Q is odd, Q+1 is used to compute the merge matrix.

So, assuming that Q is even, Sm is constructed from

Sm = Sn2m (Q)

[
φ (2ξ +1) ,∀ξ < 0

φ (2ξ −1) ,∀ξ > 0

]
. (A.56)

A.8 LIMITERS

The generalised minMod slope limiter as it is described in [3] is used to avoid
overshoots in the presence of shocks. It is not strictly monotone and TVD as the
original minMod method, but is classified as a TVB (Total Variation Bounded)
method.

ũe
1 = minMod

(
θl

ũe
0− ũe−1

0
2

, θl
ũe+1

0 − ũe
0

2
, ũe

1

)
,θl ∈ [1,2] , (A.57)

where ũe
0 is the mean value and ũe

1 is the linear slope of element e. The min-mod
function is defined as

minMod(a,b,c) =


min(a,b,c) if a,b,c > 0

max(a,b,c) if a,b,c < 0

0 otherwise

.

The value of θl blends the limiter between the classical min-mod for θl = 1 and
the less restrictive, generalised min-mod from [3] for θl = 2. The limiter is applied
after each stage of the Runge-Kutta time-stepping scheme.

45



A. Theory manual

A.9 API BOUNDARY CONDITIONS

When coupled to an external solver (i.e. in API mode), the timestep requirement
on the cable dynamics is potentially orders of magnitude smaller than that required
by the external solver. To save computational effort, the boundary conditions that
are sent to Moody at each coupling time are interpolated to achieve intermediate
boundary conditions. The position of the attachment point is interpolated based on
constant acceleration over the time step, and using a staggered process to maintain
smoothness.

To explain, we let tk and tk+1 be two consecutive coupling times, with corre-
sponding mooring point positions rk and rk+1. We introduce the staggered-time
fraction φ ∈ [0,1] and identify a corresponding mooring time tm

k+1 ∈ [tk, tk+1] as

tm
k+1 = φ tk +(1−φ) tk+1 . (A.58)

The mooring boundary conditions rD(t) and vD(t) are interpolated over the moor-
ing time step interval t ∈

[
tm
k , tm

k+1
]

as

rD (tm
k + τ) = rm

k + vm
k τ +0.5akτ

2 , (A.59)
vD (tm

k + τ) = vm
k +akτ , (A.60)

where τ ∈
[
0, tm

k+1− tm
k

]
, while rm

k = rD
(
tm
k

)
and vm

k = vD
(
tm
k

)
are taken from the

previous coupling interval. To close the system, we only need to define ak. Here,
we choose ak as the constant acceleration needed to satisfy rD (tk+1) = rk+1, i.e.

ak =
rk+1− rm

k − vm
k ∆k

0.5∆2
k

, (A.61)

with ∆k = tk+1− tm
k .

46


