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The movement related cortical potential (MRCP), a slow cortical potential from the

scalp electroencephalogram (EEG), has been used in real-time brain-computer-interface

(BCI) systems designed for neurorehabilitation. Detecting MPCPs in real time with high

accuracy and low latency is essential in these applications. In this study, we propose a

new MRCP detection method based on constrained independent component analysis

(cICA). The method was tested for MRCP detection during executed and imagined

ankle dorsiflexion of 24 healthy participants, and compared with four commonly used

spatial filters for MRCP detection in an offline experiment. The effect of cICA and the

compared spatial filters on the morphology of the extracted MRCP was evaluated by

two indices quantifying the signal-to-noise ratio and variability of the extracted MRCP.

The performance of the filters for detection was then directly compared for accuracy and

latency. The latency obtained with cICA (−34 ± 29 ms motor execution (ME) and 28 ±

16 ms for motor imagery (MI) dataset) was significantly smaller than with all other spatial

filters. Moreover, cICA resulted in greater true positive rates (87.11 ± 11.73 for ME and

86.66 ± 6.96 for MI dataset) and lower false positive rates (20.69 ± 13.68 for ME and

19.31± 12.60 for MI dataset) compared to the other methods. These results confirm the

superiority of cICA in MRCP detection with respect to previously proposed EEG filtering

approaches.

Keywords: brain-computer interface (BCI), movement related cortical potential (MRCP), constrained independent

component analysis (cICA), electroencephalogram (EEG), spatial filters

INTRODUCTION

The movement-related cortical potential (MRCP) is a low frequency (0–5Hz) negative shift in the
electroencephalogram (EEG) signal, which has recently been used as an EEGmodality for real-time
brain computer interface (BCI) applications, particularly in neuromodulation systems (Mrachacz-
Kersting et al., 2016). The ability to detect MRCPs with high accuracy and short latency (usually
shorter than 300ms) on a single trial basis is crucial for these applications. Specifically, the high
demand on temporal precision has been shown to be fundamental in efficiently inducing plasticity
in neurorehabilitation applications (Mrachacz-Kersting et al., 2012). Improvement in accuracy and
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latency of single-trial MRCP detection is therefore a relevant
challenge. The amplitude of the MRCP is typically between 5
and 30 µV and therefore easily masked by other brain activities
(Wright et al., 2011). Moreover, low frequency motion artifacts
and the electrooculogram (EOG) have frequency bandwidths
similar to the MRCP, but with much greater magnitudes. Thus,
extracting a single trial MRCP from an EEG signal with high
accuracy and minimal latency in real-time is a challenging task.

Spatial filtering is one of the most commonly used EEG signal
processing approaches for artifact removal and improving the
detection accuracy of cortical potentials. The MRCP has a well-
defined spatial distribution, being located directly over the scalp
area of the corresponding primary motor cortex region. For
example, the MRCP accompanying an ankle dorsiflexion task
is most pronounced over the apex (Cz of 10–20 montage). The
most common spatial filters used in EEG-based BCI systems
are the Common Spatial Pattern (CSP) (Blankertz et al., 2008),
Laplacian spatial filter (LAP) (McFarland et al., 1997; Xu et al.,
2014a,b), and Independent Component Analysis (ICA) (Bell and
Sejnowski, 1995; Cardoso, 1999). CSP decomposes multi-channel
EEG signals into distinct spatial patterns by solving a generalized
eigenvalue problem. This method has been widely used to
extract motor imagery-based BCIs, particularly in sensory-motor
rhythm (SMR) (Ramoser et al., 2000; Blankertz et al., 2008) and
has also been tested preliminarily in MRCP detection (Niazi
et al., 2011). However, the performance of CSP is very sensitive
to outliers, which are inevitable in real-time BCI applications
(Blankertz et al., 2008). LAP calculates the second derivative of
the instantaneous spatial voltage distribution for each electrode
location, and thereby emphasizes the activity originating in
radial sources immediately below the electrode (McFarland et al.,
1997). LAP has been applied in MRCP detection (Xu et al.,
2014a,b). ICA-based spatial filters have been also successfully
used in a variety of EEG signal processing applications, such as
artifact reduction and source localization (Xu et al., 2004; Jiang
et al., 2015). However, there are limitations associated with the
implementation of ICA, especially for real-time applications, as
it requires manual selection of the desired components from the
estimated sources.

The constrained ICA (cICA), also known as one-unit ICA
(Zhang, 2008), is a recent approach introduced to overcome the
manual intervention limitation of ICA. cICA is a spatial filter
extended from ICA that uses a reference signal to automatically
extract only the desired source, without requiring the manual
selection procedure of traditional ICA-based methods. cICA has
recently been applied for EEG signal processing applications
(James and Gibson, 2003; Joshua and Rajapakse, 2005) and has
been shown to be successful in extracting event-related cortical
potentials (ERP), such as the P300 (Spyrou and Sanei, 2006;
Lee et al., 2013), as well as removing ocular artifacts (Huang
et al., 2011); however, cICA has not been used previously for
the detection of MRCPs. In this paper, we present for the first
time, the application of cICA for MRCP detection, including
a systematic investigation of the efficacy of cICA in single-
trial MRCP detection, and comparison of cICA performance
with the previously proposed CSP, LAP, Infomax (Bell and
Sejnowski, 1995), and JADE (Cardoso, 1999). The performance

of these filters was evaluated both with metrics based on the
morphology of the MRCP and on the detection accuracy. For
quantifying detection accuracy, the filtered EEG was classified
with the previously proposed Locality Preserved Projection (LPP)
followed by Linear Discriminator Analysis (LDA) (Xu et al.,
2014a).

MATERIALS AND METHODS

Data Acquisition
Participants
The data used in the current study are part of the dataset
previously reported in Jochumsen et al. (2015). In the following,
the experimental protocol is briefly described for clarity. The full
details of the experimental procedure can be found in Jochumsen
et al. (2015). Twenty-four healthy participants (7 female and
17 male 27 ± 4 years old) without any prior BCI experience
participated in the experiment. All procedures were approved by
the local ethics committee (N-20130081), and the participants
gave their written informed consent before the experiment.

Experimental Procedures
The participants were seated in a chair, relaxed andwith their foot
fixed to a pedal. During the experimental session, the participants
were instructed to perform ankle dorsiflexion following a visual
cue display on a computer screen that was located at a distance
of 1.5m in front of them. The cue was presented with a
custom-made program (Knud Larsen, SMI, Aalborg University)
which provides the instructions by displaying Ready, Focus, and
Task commands in 8–10 s intervals. The 24 participants were
divided into two groups. The first 12 participants (Group 1)
were asked to perform actual dorsiflexion (motor execution,
ME), while the remaining 12 participants (Group 2) were asked
to perform only motor imagery (MI) of the movement. Four
contraction types were performed: fast contraction targeted at
20% maximum voluntary contraction (MVC), fast contraction
targeted at 60%, slow contraction targeted at 20%, and slow
contraction targeted at 60% MVC. In the visual cue, a moving
cursor showed when and how fast the subject should perform
the task. For each of the four contraction types, each participant
performed approximately 50 trials of the ankle dorsiflexion task
(ME or MI). The order of contraction types was randomized
for both ME and MI sessions. The motor tasks were separated
randomly between 8 to 10 s. For the purpose of this study,
we only analyzed and report the results using the trials of fast
20% MVC, for both ME and MI tasks. For this particular task,
the instruction shown on the screen for Ready, Focus, and
Task commands lasted between 4–6, 3, and 1 s, respectively.
The subjects focused for 3 s, followed by the execution phase
0.5 s to reach 20% MVC, and the contraction was maintained
for 0.5 s, after which a rest period was given (between 4
to 6 s).

EEG Recording
A multichannel EEG electrode system (32 Channel Quick-
Cap, Neuroscan) and an EEG Amplifier (Numaps Express,
Neuroscan) were used according to the international 10–20
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system to obtain EEG signals. Ten electrodes placed at standard
10–20 positions FP1, F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4
were used to collect EEG data at a sampling rate of 500Hz. The
reference electrode was located on the right ear lobe. All analyses
presented below were performed offline.

Data Processing
Since zero-phase non-causal IIR filters have been shown to
perform well on Slow Cortical Potentials (SCPs) related to
anticipatory behavior (Garipelli et al., 2011), the EEG data in the
current paper were non-causally bandpass filtered between 0.05
to 3Hz using a zero-phase second-order Butterworth bandpass
filter prior to further processing. The choice of the filter was
consistent with prior studies that used MRCP for real-time
detection of motor intentions (Xu et al., 2014a) and similar to
the recommendations of (Garipelli et al., 2011). All data were
analyzed without rejecting segments with artifacts.

cICA for MRCP Detection
The cICA approach is briefly explained in the following.

Suppose that a N-dimensional observed sensor signal x(t) =
[x1(t), x2(t), . . . , xN(t)]

T can be expressed as:

x(t) = As(t), (1)

where s(t) = [s1(t), s2(t), . . . , sM(t)]T is a M-dimensional
mutually-independent latent source vector, and A is an unknown
non-singular mixing matrix. The objective of cICA is to find a
separating or de-mixing vector w without knowing the source
vector and mixing matrix, such that:

y(t) = wTx(t) = wTAs(t), (2)

where y(t) is the desired independent component (desired
source signal). To determine this de-mixing vector, the cICA
algorithm consists of the following steps. First, a linear whitening
transformation is applied to the time series so that each column
of z(t) has unit variance and the columns are uncorrelated, i.e.,
the covariance matrix of z(t) becomes the identity matrix:

z(t) = Vx(t), (3)

where V is a whitening matrix (Zhang, 2008). Next, according to
the negentropy maximum criterion (Hyvärinen et al., 2001), the
objective function of the next step is defined by:

J(y) ≈ γ[E{G
(

y(t)
)

} − E{G(ν)}]2, (4)

where E{} indicates expectation of the signal and y(t) = wTz(t)
is the output of the algorithm, γ is a positive constant, ν is
a Gaussian variable having zero mean and unit variance, and
G (·) can be any non-quadratic function. For traditional ICA
methods, which have several independent components at the
output, all columns of the output will be independent of each
other by maximizing (4). To obtain one specific source signal,
a priori information about the particular desired source needs to

be incorporated into the cost function. In order to achieve this
goal, the cICA problem is formulated as:

J(w) ≈ γ[E{G(wTz)} − E{G(v)}]2

Subject to : g(w) = ε(y, r)− ξ , h(w) = E{y2} − 1 = 0, (5)

where ε(y,r) is the similarity measure between the independent
component y and the reference signal r, and ξ is a the similarity
threshold. Therefore, g(ω) is the similarity constraint for the
ICA optimization criterion, and h(ω) constrains y to have unit
variance. Assuming that the desired IC is the one and only one
closest to the reference r, one can get the following inequality
relationship:

ε(w∗Tz, r) < ε(w1
Tz, r) < . . . ε(wN−1

Tz, r), (6)

where the optimum vector ω
∗

is the optimum demixing vector
corresponding to the desired IC, and wi(i = 1, . . . ,N −

1) corresponds to other unwanted ICs. The value of the
similarity threshold lies in [ε(w∗Tz, r), ε(w1

Tz, r)]. The Lagrange
multipliers method is used to solve the optimization problem of
(5) (Lu and Rajapakse, 2005, 2006; Zhang, 2008):

wt+ 1 = wt − ηR−1
z Ŵ1/Ŵ2

Ŵ1 = γ̄E{zG′
y(y)} − 1/2µE{g′y(y)} − λE{zy}

Ŵ2 = γ̄E{zG′′
y2
(y)} − 1/2µE{g′′

y2
(y)} − λ, (7)

where t represents the iteration number. Rz = E{zzT}, γ̄ =

γ · sign(E{G(y)} − E{G(v)}); and G′
y(y), g

′
y(y), G

′′
y2
(y), g′′

y2
(y), are

respectively, the first and second derivatives of G(y), g(y) with
respect to y. The optimum multipliers µ and λ are found by
iteratively updating them based on a gradient-ascent method:

µt = Max{0,µt−1 + ηg(wt−1)}

λt = λt−1 + γt−1h(wt−1) (8)

Designing the reference signal plays a crucial role in cICA. The
reference signal should be closely related to the desired source
signal in terms of shape and phase (Zhang and Zhang, 2006;
Zhang, 2008). For example, it is possible to use one of the
observed channels as a reference signal (Mi, 2014). We propose
the use of the average MRCP from Cz (for dorsiflexion) over all
trials of a training set to build a subject-specific reference signal.
Details of the training sets and construction of the reference
signal using the training sets are discussed below.

Movement Detection Analysis
“Go” epochs and “No-go” epochs were extracted from the
recorded signals according to the onset of the performed
dorsiflexion task. Go epochs were the time intervals containing
the MRCP whereas No-go epochs contained only noise. The
effect of the filters on the MRCP morphology was quantified
by two indices: the Signal to Noise Ratio (SNR) and the Go
epoch variability (ρ). Moreover, three additional indices were
calculated from the dataset of each subject to evaluate the
performance of spatial filters in MRCP detection: True Positive
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Rate (TPR), False Positive Rate (FPR), and Detection Latency
(DL). This was done using an offline evaluation framework,
as described next. Following the extraction of Go epochs and
No-go epochs, cross validation was implemented, and in each
fold of the cross-validation, two thirds of the Go epochs and
No-go epochs were randomly selected as the training set, and
the remaining third of the Go and No-go epochs formed the
testing set. Cross validation was performed whereby two thirds
of the trials from the entire data set were randomly selected as
a training set and the remaining one third as the testing set,
and this was repeated ten times. The training set was used to
generate the weights for spatial filters, and by assuming that
the characteristics of the MRCP signals did not change across
sessions, the demixing vector obtained from the training phase
was applied to the test data. This offline evaluation over a
number of folds allows a systematic evaluation of each method’s
performance by obtaining the receiver operating characteristics
(ROC) curve of each method through cross-validation.

The SNR was calculated for each subject by extracting Go
and No-go epochs, respectively, from [−2, 2] s and [2, 6] s
with respect to the task onset (the turning point of the cue, see
(Jochumsen et al., 2015)). Denoting the lth Go epoch and No-go
epoch by xlS(t) and x

l
N(t), respectively, each containingT samples,

the SNR can be expressed as:

SNR =

L
∑

l= 1

T
∑

t= 0

[

xlS(t)
]2

L
∑

l= 1

T
∑

t= 0

[

xlN(t)
]2

. (9)

The Go epoch variability ρ was defined as:

ρ =

1
LT

L
∑

l= 1

T
∑

t= 0

∣

∣

∣
xlS(t)− xS(t)

∣

∣

∣

max
[

xS(t)
]

−min
[

xS(t)
] , (10)

where xS(t) is the average of the LGo epochs. The lower the value
of ρ, the more consistent the Go epochs are. It should be noted
that the two indices are calculated for all spatial filter outputs.

TPR, FPR, and DL were calculated on Go and No-go epochs,
respectively extracted from [−3, 1] s and [2, 6] s with respect to
the task onset, for each subject. TPR and FPR for each fold of the
testing set were defined as:

TPR =
Total number of correctly detected Go epochs

Total number of Go epochs
, (11)

and

FPR =
Total number of incorrectly detected No-go epochs

Total number of No-go epochs

The Go epoch interval used to calculate the measures of detection
performance was chosen to be different from the Go-epochs

used for SNR calculation because, considering the length of the
moving window, the time interval [−2 2] s, which perfectly
covers all MRCP components, cannot be used if one would expect
negative detection latencies where detection happens before the
movement execution (t = 0). It should be noted that since the
time interval [−3, 1] covers most parts of MRCP, this choice does
not affect the TPR values.

To train Infomax and JADE, the training sets were built by
concatenating all Go epochs and all No-go epochs of the training
set. This means that all concatenated Go epochs (randomly
selected) formed the first half of the training set signals; and the
corresponding second half of the training set signals was formed
by the concatenation of randomly selected No-go epochs in each
channel. This approach was chosen as it provided a consistent
training process for each method, and furthermore, it enabled
us to perform the cross validation process. A similar approach
was used for cICA, with an additional reference signal for the
EEG signals. The reference signal for cICA was constructed using
two steps: first, a subject-specific MRCP template was generated
by averaging all Go-epochs of the Cz epochs in the training set
([−2, 2] s with respect to the task onset). Next, considering that
the training sets were concatenated Go and No-go epochs for
the other methods (Infomax and JADE), the reference signal of
cICA was built by repeating the MRCP template corresponding
to the signal epochs and using zero for the No-go epochs.
By knowing the actual occurrence time of the executed or
imagined movements, this approach could be implementable in
the training phase of an online application as well. To train CSP,
No-Go epochs and Go epochs were provided to the algorithm in
two different matrices built by placing Go epochs in the rows of
the signal matrix and each No-Go epoch in the rows of the noise
matrix. LAP is not a supervised method; therefore, no training
was required.

A LPP-LDA classifier was used for classification of the Go and
No-go epochs (Xu et al., 2014a). A sliding window with length
2 s and 50ms shift was applied to each Go and No-go epoch. A
detection occurred when n consecutive sliding windows resulted
in detection at the output of the LPP-LDA classifier. The choice
for n determines the sensitivity of the overall system. Therefore,
by varying n from 1 to 10, the average (over subjects) ROC curve
was derived through cross-validation on the testing dataset of all
subjects. TPR is defined as the ratio of the number of correctly
detected Go epochs to the total number of Go epochs in the
testing set. Similarly, FPR is defined as the ratio of the number
of false detections of No-go epochs to the total number of No-go
epochs in the testing set. The detection latency is defined as the
time difference between detection and movement onset for the
executed movements, and between detection and task onset for
the imagined movements, in each Go epoch.

Statistical Analysis
To investigate the effect of the spatial filtering method on SNR
and ρ, Friedman’s Two-way ANOVA was performed, where
the factor was Methods with five levels (LAP, CSP, Infomax,
JADE, and cICA). When a significant difference was observed,
a multiple comparison (Bonferroni) was carried out to identify
which methods were significantly different. The significance level
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FIGURE 1 | Boxplots of SNR and ρ-values for ME and MI datasets: (A) SNR values for ME dataset, (B) ρ-values for ME dataset, (C) SNR values for MI dataset, and

(D) ρ-values for MI dataset.

of all tests was set at p < 0.05. Furthermore, in order to investigate
the effect of the five methods on MRCP detection, two-way
repeated measure ANOVA was performed on the ME and MI
datasets, with fixed factor the spatial filtering algorithms (LAP,
CSP, Infomax, JADE, and cICA) and random factor the subject
(SUB, 12 levels). The main null hypothesis was that Methods
was not a significant factor on TPR, FPR, and DL. When the
null hypothesis was rejected, a multiple comparison (Tukey with
Bonferroni correction) followed.

RESULTS

The boxplot for the average values of SNR and ρ for the output
of the spatial filters over folds from the testing sets, and for all
subjects are presented in Figure 1. Direct observation indicates
that, in this offline study, Infomax is able to suppress the noise
better than other methods (highest SNR) in both the ME and MI
datasets. In contrast, cICA had the lowest SNR values compared
to other methods. However, in both the ME and MI datasets,
cICA resulted in the lowest values for ρ among all methods. For
the ME dataset, results from the Friedman’s Two-way ANOVA
showed that Methods had a significant effect on ρ and SNR (p
< 0.001). The multiple comparison tests found that the SNR was
smaller for cICA than LAP, Infomax, and JADE. Moreover, cICA,
LAP, and CSP led to significantly lower variability compared to
JADE and Infomax. For the MI dataset, the factor Methods again
had a significant effect on ρ and SNR (p < 0.001). Post-hoc
comparisons showed that SNR for cICA was significantly lower
than Infomax, and JADE; and Infomax had significantly greater
SNR values than LAP. For ρ, similar to the ME dataset, cICA,
LAP, and CSP led to significantly lower variability than JADE and
Infomax.

Figure 2 represents the algorithm used to calculate the
detection latency when 5 consecutive windows result in
detection at the output of the LPP-LDA classifier (n = 5).
The average of the ROC curves of MRCP detection over all
subjects for both ME and MI (testing) datasets is provided
in Figure 3 for all spatial filters and 10 decision thresholds
(n = 1, 2, . . . , 10). The area under the ROC curves is
provided in Table 1. For both datasets, the area under the
ROC curve of cICA has the highest value confirming that
for each n, cICA provides the best combination of TPRs and
FPRs (high TPR and low FPR). Therefore, the accuracy of
cICA is superior compared to other spatial filters. As seen
from the ROC curves, five decision windows are located
at the midpoint of the convex part of the ROC curve,
meaning that five consecutive detections could be a good
balance between TPR and FPR for all filters. Therefore, the
results presented next were calculated for five as the decision
threshold.

The detection performance is presented in Table 2 for both
ME and MI datasets. The highest TPRs and lowest FPRs and
DLs were obtained for cICA for both datasets. The detection
latency for cICA (−34 ± 29ms for ME and 28 ± 16ms for
MI dataset) was significantly smaller than for the other spatial
filters.

For the ME dataset, the ANOVA test showed that Methods
has a significant effect on TPR, FPR, and DL (p < 0.001).
Multiple comparisons found that TPR for cICA (87.11 ±

11.73) was significantly higher than with all other methods.
LAP (74.65 ± 13.13) had significantly greater TPRs than CSP
(67.14 ± 13.99) and Infomax (67.27 ± 7.69). FPR for cICA
(20.69 ± 13.68) was significantly lower than for Infomax (31.70
± 9.94) and JADE (30.44 ± 10.26); and FPR for Infomax
(31.70 ± 9.94) was significantly higher than for CSP (24.55
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FIGURE 2 | Offline implementation of movement detection.

FIGURE 3 | Average of the ROC curves of five spatial filters across all subjects: (A) ME dataset (B) MI dataset (black circle represents the value of each ROC curve

when n = 5 in both graphs).

± 11.31) and cICA (20.69 ± 13.68). Regarding the detection
latencies, the statistical analysis showed that cICA (−34 ±

29ms) had significantly lower detection latencies compared
with all other methods. In contrast, the detection latencies
with CSP (295 ± 13ms) were significantly greater than for
Infomax (245 ± 9ms), LAP (197 ± 15ms), and cICA (−34 ±

29ms).
Results for the MI dataset were similar to those for the

ME dataset. Methods influenced significantly TPR, FPR, and
DL (p = 0.00 for TPR and DL, and p = 0.02 for FPR).
Multiple comparisons indicated that TPR from cICA (86.66

± 6.96) was significantly greater than for all other methods,
and TPR for LAP (75.06 ± 12.94) was significantly higher
than for CSP (66.87 ± 10.13) and Infomax (64.69 ± 9.42).
FPR of cICA (19.31 ± 12.60) was significantly lower than
for LAP (25.99 ± 17.04), Infomax (26.19 ± 7.78), and
JADE (26.12 ± 10.25), but not significantly different from
CSP (23.02 ± 10.56). The detection latency obtained with
cICA (28 ± 16) was significantly lower than for all other
methods.

The average TPR, FPR, and DL over the 10 folds are reported
for each subject from both datasets in Figure 4. For 11 of the
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12 subjects, cICA has the highest TPR and lowest FPR and DL
among all spatial filters.

DISCUSSION

The MRCP has recently been implemented as a control signal
in a variety of BCI applications (Xu et al., 2014a,b; Jiang
et al., 2015; Mrachacz-Kersting et al., 2016). The reliable and
efficient detection of MRCPs enables the design of accurate
and fast brain switches. Depending on the application of BCI
systems, the importance of accuracy and latency of the system
may vary. To be more specific, while large DL may not be
ideal for BCI applications developed to induce brain plasticity,
slightly lower TPR may not greatly affect the performance of
the BCI system. On the other hand, high TPR are required
for the control of exoskeletons for replacement rather than
restoration of function, and for this application, a low DL is
not so imperative. Accuracy and latency of detection of the
MRCP highly relies on the signal processing method used to
extract features from raw EEG. Spatial filters are one of the most
efficient and successful feature extraction methods in EEG signal
processing due to the spatial distribution of the signal features.
In this study, the performance of cICA, a newly introduced ICA-
based spatial filter, was compared with four other spatial filters
in an offline experiment for MRCP detection frommulti-channel
EEG recordings, during execution and imaginary dorsiflexion of
healthy subjects.

The performance of each spatial filtering algorithm in the
detection of MRCPs was initially evaluated based on clarity and
consistency of the extracted MRCP, quantified by SNR and ρ,
respectively. Moreover, TPR, FPR, and DL were investigated
through cross-validation in an offline experiment. The reported
TPRs in this study are in agreement with the previous similar

TABLE 1 | Average of the ROC curves of movement detection for ME and MI

datasets.

Spatial filter Area under the ROC curve

LAP CSP Infomax JADE cICA

ME dataset 0.81 0.79 0.73 0.75 0.90

MI dataset 0.80 0.79 0.76 0.78 0.91

studies (Xu et al., 2014a,b). However, since, in this study, it
was intended to evaluate the performance of the detector and
determine the optimum parameters for movement detection
using ROC, the values of FPR were calculated with a different
measure than previous similar studies. In the previous studies,
FPR was defined as the number of false detections per minute.
Such approach for calculating FPRs caused the values of FPRs
to be biased by the experiment protocol and inconsistent with
TPRs. In this paper, the approach used to calculate FPR values
makes the values independent of the experimental protocol, in
which parameters such as the refractory period of the MI/ME
can affect the accuracy of the definition of FPR used in previous
studies (Niazi et al., 2011, 2013): false positive per unit time. Also,
this approach is consistent with the approach used to calculate
TPRs, enabling us to obtain ROC curves for the detector. The
calculation of DL in this study is also in agreement with previous
studies. It should be noted that a non-causal filter was used in
the current study. In a real online experiment, a causal filter
should be used. In order to investigate the effect of type of the
bandpass filtering method (causal vs. non-causal), we performed
an additional analysis to compare the performance of a causal
second-order Butterworth bandpass filter with the bandwidth of
0.05–3Hz with the same non-causal filter. The average signal

of all causally and non-causally filtered Go-epochs (MRCPs)

from the Cz channel for Subject 1 are provided in Figure 5.

The observations indicate that there is a smaller amplitude in

the negative peak of MRCP when the causal filter is used.

We also compared the detection performance for causally and

non-causally filtered signals for all subjects in the ME group.
The causal filtering resulted in slightly higher FPR and lower
TPRs compared to using non-causally filtered data, and the
change was consistent in overall detection accuracy for all spatial
filters investigated (the change of the averaged TPR values
from causally to non-causally filtered signals was: 0.87, −0.19,
−3.87,−5.89,−4; and the corresponding change of the averaged
FPR values was: −7.69, 9.95, 7.46, 10.86, 13.47 for LAP, CSP,
Infomax, JADE, and cICA respectively). This consistent change
in overall detection accuracy is expected given the results shown
in the figure, as the causal filter resulted in a less pronounced
MRCP. However, causal filtering had no significant effect on
the detection latencies (the difference between the averaged DL
values for causally and non-causally filtered signals was: −0.07,
−0.03, −0.06, −0.02, 0.00 s for LAP, CSP, Infomax, JADE, and

TABLE 2 | Average TPR, FPR, and DL for movement detection for ME and MI datasets.

Spatial filter Motor execution Motor imagery

TPR FPR DL (ms) TPR FPR DL (ms)

LAP 74.65 ± 13.13 25.83 ± 16.91 197 ± 15 75.06 ± 12.94 25.99 ± 17.04 216 ± 14

CSP 67.14 ± 13.99 24.55 ± 11.31 295 ± 13 66.87 ± 10.13 23.02 ± 10.56 246 ± 15

Infomax 67.27 ± 7.69 31.70 ± 9.94 245 ± 9 64.69 ± 9.42 26.19 ± 7.78 286 ± 11

JADE 69.33 ± 8.56 30.44 ± 10.26 256 ± 16 68.68 ± 10.35 26.12 ± 10.25 250 ± 13

cICA 87.11 ± 11.73 20.69 ± 13.68 −34 ± 29 86.66 ± 6.96 19.31 ± 12.60 28 ± 16

The results are presented (mean ± standard deviation across subjects) for each spatial filter.
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FIGURE 4 | Average TPR, FRP, and DL for all subjects for both ME (left) and MI datasets (right).

FIGURE 5 | Average signal of all causally (___) and non-causally (- - - - -)

filtered Go-epochs (MRCPs) from the Cz channel for Subject 1.

cICA, respectively). Therefore, it is highly possible that the
choice of causal or non-causal filtering has a slight effect on the
overall detection accuracy, but there was no effect on DL values.
However, this needs to be verified in a subsequent dedicated
online study, which is beyond the scope of the current study with
the objective of introducing cICA for MRCP detection.

The cICA requires the choice of a threshold that weights
the relative importance of similarity with the reference signal in
the optimization (Zhang, 2008). The suitable value of threshold
depends on both the designed reference signal and the similarity
measure. An effective way to determine the threshold given
a reference signal, which was also used in this paper, is to
use a small threshold initially, and then gradually increase the
threshold (Lu and Rajapakse, 2006). For the reference signal
based on the average of the Go epochs of the Cz channel, the
value of the threshold was set to 0.9. On the other hand, as
mentioned earlier, the shape of the designed reference signal
plays an important role in the performance of cICA. Therefore,
investigation of the effect of other types of reference signals such
as the common rectangular pulse, smoothed MRCPs (Garipelli
et al., 2013), and discriminative-based reference signal (Lee et al.,
2016) will be done in the future in attempt to improve detection
performance.

With the selected parameters, the area under the ROC curve
for cICA was greater than for the other methods and cICA
outperformed all the other filters for TPR and DL. Moreover,
FPR was lower for cICA than for three of the other investigated
methods. Overall, this indicates an improved performance of
cICA with respect to previously proposed filtering methods.
Considering that the detection ofMRCP can be affected by hyper-
parameters such as the overlap of the sliding windows and the
number of detections required, further investigation will be done
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in the future to optimize the cICA algorithm based on these and
other aspects. The averaged SNR values for the tested methods
were not well associated with the detection performance. Indeed,
cICA provided high TPRs and low FPRs compared to other
methods but resulted in the lowest SNR values. One reason for
the low SNR of cICA may be the optimization criteria of the
method and the way SNR values were calculated in this study.
The reference signal for cICA requires the algorithm to optimize
the weights such that the desired signal can be obtained. As a
result, the trial-by-trial consistency of the signal was improved by
cICA.On the other hand, the results for the average ρ-values were
more consistent with those obtained for TPRs. This is one of the
findings of the current study: SNR does not necessarily correlate
very well with detection performance, and the consistency of the
Go epochs is equally (if not more) important for achieving a
high detection performance. This likely stems from the fact that
MRCP is a rather deterministic waveform, compared to other
motor imagery BCI signal modalities, such as ERD/ERS. It can
be concluded that, considering the shape of the reference signal
applied in the current study, cICA seems to allow amore accurate
modeling of the class of the Go epochs, and consequently a
more pronounced effect on the sensitivity of the detector. This is
because the choice of the reference signal can affect the ability of
the cICA in modeling each class and separability of the classes.
Therefore, cICA in the current study has limited effect on the
specificity of the detector due to the choice of reference signal.
It is possible that other types of reference signals can tune the
algorithm to focus on other aspects of performance, such as
specificity, which will be explored in future studies.

Regression analysis and template matching are also methods
that have been used to extract desired EEG features and for
EEG artifact removal (Wallstrom et al., 2004; Niazi et al., 2013;
Urigüen and Garcia-Zapirain, 2015). Regression algorithms
estimate the influence of the reference signal on the desired
signal either in the frequency or time domain. Linear regression
assumes that each EEG channel is the sum of the non-noisy
source signal and a fraction of the source artifact that is available
through a reference channel. Then, the goal of regression is to
estimate the optimal value for the factor that represents such
a fraction. Regression approaches need a reference channel to
be able to operate automatically. In comparison, cICA is more
flexible because although it uses a reference signal to extract
features of the EEG signal or artifacts, the reference signal does
not have to be a good estimation of the source(s). In fact, the
reference signal can be very general, as long as it provides some
reasonable constraint to ICA. For example, in Lee et al. (2016),
a rectangular reference signal, which was not similar to the
underlying source, was successfully implemented. In addition,

since the regressionmethods are based on the time and frequency
characteristics of the signals, they do not take into account the
spatial information of the sources. Templatematching techniques

such as matched filter, which uses a template to maximize the
SNR of the extracted signal, are also methods used for MRCP
extraction (Niazi et al., 2013). Similar to regression, suchmethods
only depend on the temporal features of the template and do
not consider the spatial distribution of different sources. Also,
matched filters are only optimal with additive Gaussian noise, so
they are sensitive to other types of noise and artifacts.

In the current manuscript, we only used data from one of
the four tasks for the purpose of introducing cICA for the first
time in MRCP detection. Subsequent studies will be performed
to investigate the generalizability of cICA when presented with
data from different types of tasks.

CONCLUSION

We have proposed a new spatial filter for MRCP detection. The
proposed cICA extracts the desired signal by utilizing additional
prior (spatial) information with respect to classic ICA, while
exploiting higher order statistical structures as the CSP does.
The results indicated that cICA did not enhance the extracted
MRCP from multi-channel EEG significantly better than several
commonly used spatial filters, including CSP, LAP, and ICA.
However, cICA significantly outperformed these spatial filters in
single-trial MRCP detection, with higher TPRs, lower FPRs, and
shorter latency, both for ME and MI tasks. These results indicate
that cICA is a promising new algorithm for detecting MRCP
from multi-channel EEG. Following the promising results of the
current study, we will conduct online experiments in a future
study, in which cICA will be compared with LAP and CSP.
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