Topological control on glasses’ dissolution kinetics
Bauchy, Mathieu; Smedskjær, Morten Mattrup

Publication date:
2018

Citation for published version (APA):
Topological control on glasses’ dissolution kinetics

Mathieu Bauchy *† 1, Morten Smedskjær 2

1 University of California, Los Angeles (UCLA) – United States
2 Aalborg University – Denmark

Understanding and predicting the dissolution rate of silicate glasses is of primary importance for various applications, including bioactive glasses and borosilicate wasteforms. However, the mechanism of silicates’ dissolution-and its rate-limiting step-makes poorly understood. In particular, present models linking the composition and structure of silicate glasses to their dissolution rate in a given solvent have remained largely empirical thus far. Here, based on vertical scanning interferometry (VSI) experiments and molecular dynamics (MD) simulations, we study the dissolution of a large variety of silicate glasses under various pH conditions. From a detailed analysis of the simulated structures, we demonstrate that the kinetics of the dissolution is controlled by the topology of the atomic network. We propose a new topological model of silicates’ corrosion, which is shown to offer realistic predictions of dissolution rates and activation energies for a wide selection range of silicate glasses and crystals.

Keywords: Dissolution, Topological constraint theory, Molecular Dynamics