European Heart Rhythm Association (EHRA) position paper on arrhythmia management and device therapies in endocrine disorders, endorsed by Asia Pacific Heart Rhythm Society (APHRS) and Latin American Heart Rhythm Society (LAHRS)

Bulent Gorenek (Chair)1*, Giuseppe Boriani2, Gheorge-Andrei Dan3, Laurent Fauchier4, Guilerme Fenelon5, He Huang6, Gulmira Kudaiberdieva7,8, Gregory Y.H. Lip9,10, Rajiv Mahajan11, Tatjana Potpara12, Juan David Ramirez13, Marc A. Vos14, and Francisco Marin (Co-Chair)15

ESC Scientific Document Group: Carina Blomstrom-Lundqvist16 (EHRA Review Coordinator), Aldo Rinaldi17, Maria Grazia Bongiorni18, Elena Sciaraffia19, Jens Cosedis Nielsen20, Thorsten Lewalter21, Shu Zhang22, Oswaldo Gutiérrez23, Abdel Fuenmayor24

1Eskişehir Osmangazi University, Eskisehir, Turkey; 2Cardiology Division, Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy; 3University of Medicine and Pharmacy “Carol Davila”, Colentina University Hospital University, Bucharest, Romania; 4Centre Hospitalier Universitaire Trousseau et Université François Rabelais, Tours, France; 5Hospital Israelita Albert Einstein, São Paulo, Brazil; 6Renmin Hospital of Wuhan University, Wuhan, China; 7Adana, Turkey; 8Center for Postgraduate Education and Research, Bishkek, Kyrgyzstan; 9Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK; 10Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; 11The University of Adelaide, Lyell McEwin Hospital, Royal Adelaide Hospital and SAHMRI, Adelaide, Australia; 12School of Medicine, Belgrade University; Cardiology Clinic, Clinical Centre of Serbia, Belgrade, Serbia; 13Clinica CardioVid, Medellín, Antioquia, Colombia; 14Umc Utrecht, Utrecht, Netherlands; 15HU Virgen de la Arrixaca, Murcia, Spain; 16Department of Medical Science and Cardiology, Uppsala University, Uppsala, Sweden; 17St Thomas’ Hospital, London, UK; 18Santa Chiara University Hospital of Pisa, Pisa, Italy; 19Uppsala University Hospital, Uppsala, Sweden; 20Aarhus University Hospital, Aarhus, Denmark; 21Peter Ospyka Heart Center, Munich, Germany; 22Beijing Fuwai Hospital, Beijing, China; 23Hospital Clinica Bíblica, San Jose, Costa Rica; and 24Electrophysiology and Arrhythmia Section, Cardiovascular Research Institute, University Hospital of The Andes, Avenida 16 de Septiembre, Mérida 5101, Venezuela

Received 19 February 2018; editorial decision 22 February 2018; accepted 25 February 2018; online publish-ahead-of-print 16 March 2018

Endocrine disorders are associated with various tachyarrhythmias, including atrial fibrillation (AF), ventricular tachycardia (VT), ventricular fibrillation (VF), and bradyarrhythmias. Along with underlying arrhythmia substrate, electrolyte disturbances, glucose, and hormone levels, accompanying endocrine disorders contribute to development of arrhythmia. Arrhythmias may be life-threatening, facilitate cardiogenic shock development and increase mortality. The knowledge on the incidence of tachy- and bradyarrhythmias, clinical and prognostic significance as well as their management is limited; it is represented in observational studies and mostly in case reports on management of challenging cases. It should be also emphasized, that the topic is not covered in detail in current guidelines. Therefore, cardiologists and multidisciplinary teams participating in care of such patients do need the evidence-based, or in case of limited evidence expert-opinion based recommendations, how to treat arrhythmias using contemporary approaches, prevent their complications and recurrence in patients with endocrine disorders. In recognizing this close relationship between endocrine disorders and arrhythmias, the

* Corresponding author. Tel: +905424312483. E-mail address: bulent@gorenek.com

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2018. For permissions, please email: journals.permissions@oup.com.
European Heart Rhythm Association (EHRA) convened a Task Force, with representation from Asia-Pacific Heart Rhythm Society (APHRS) and Sociedad Latinoamericana de Estimulación Cardiaca y Electrofisiología (SOLAECE), with the remit of comprehensively reviewing the available evidence and publishing a joint consensus document on endocrine disorders and cardiac arrhythmias, and providing up-to-date consensus recommendations for use in clinical practice.

Keywords

Endocrine disorders • Arrhythmias • Atrial fibrillation • Ventricular arrhythmias • Cardiac implantable electronic device • Pacemaker • Implantable cardioverter-defibrillator • Catheter ablation • Diabetes • Thyroid disorders • Hyperthyroidism • Hypothyroidism • Pheochromocytoma • Growth hormone dysfunction • Hyperaldosteronism • Adrenal insufficiency • Parathyroid disease • Stroke • Oral anticoagulation • EHRA position paper

Table of Contents

- Introduction ... 896
- Evidence review ... 896
- Mechanisms and pathophysiology of cardiac arrhythmias in endocrine disorders .. 896
- Management of arrhythmias in specific endocrine disorders ... 896a
 - Pancreas dysfunction ... 896a
 - Diabetes mellitus ... 896a
 - Thyroid dysfunction ... 896a
 - Hyperthyroidism ... 896a
 - Hypothyroidism ... 896a
 - Amiodarone-induced thyroid dysfunction 896a
 - Pheochromocytoma ... 895p
 - Growth hormone dysfunction 895q
 - Acromegaly ... 895q
 - Growth hormone deficiency 895q
 - Diseases of adrenal cortex 896r
 - Hyperaldosteronism 896r
 - Adrenal insufficiency 896r
 - Parathyroid disease ... 896s
 - Sex hormones-related differences in the risk of arrhythmias ... 896s
 - Stroke risk assessment and prevention of arrhythmias associated with endocrine disorders 896t
 - Catheter ablation of arrhythmias associated with endocrine disorders .. 896u
 - Device-based therapy of arrhythmias in patients with endocrine disorders .. 896u
 - Current research gaps, ongoing trials and future directions .. 896v

Introduction

However, the ultimate judgement on the care of a specific patient must be made by the healthcare provider and the patient in light of all individual factors presented.

Evidence review

This document was prepared by the Task Force with representation from EHRA, APHRS, and SOLAECE and peer-reviewed by official external reviewers representing EHRA, HRS, APHRS, and SOLAECE. Their members made a detailed literature review, weighing the strength of evidence for or against a specific treatment or procedure, and including estimates of expected health outcomes where data exist. In controversial areas, or with respect to issues without evidence other than usual clinical practice, a consensus was achieved by agreement of the expert panel after thorough deliberation.

In contrast to guidelines, we opted for an easier and user-friendly system of ranking using ‘coloured hearts’ that should allow physicians to easily assess the current status of the evidence and consequent guidance (Table 1). This EHRA grading of consensus statements does not have separate definitions of the level of evidence. This categorization, used for consensus statements, must not be considered as directly similar to that used for official society guideline recommendations, which apply a classification (Class I–III) and level of evidence (A, B, and C) to recommendations used in official guidelines.

Thus, a green heart indicates a ‘should do this’ consensus statement or indicated treatment or procedure that is based on at least one randomized trial, or is supported by strong observational evidence that it is beneficial and effective. A yellow heart indicates general agreement and/or scientific evidence favouring a ‘may do this’ statement or the usefulness/efficacy of a treatment or procedure. A ‘yellow heart’ symbol may be supported by randomized trials based on a small number of patients or which is not widely applicable. Treatment strategies for which there is scientific evidence of potential harm and should not be used (‘do not do this’) are indicated by a red heart.

Mechanisms and pathophysiology of cardiac arrhythmias in endocrine disorders

A number of cardiac arrhythmia mechanisms may underlie ventricular and atrial arrhythmias, such as reentry, abnormal automaticity or triggered activity. Normally, these mechanisms are not active in a normal (young) heart. The only exceptions are inherited arrhythmia syndromes, in which cardiac remodelling may be present that make the heart more vulnerable often under specific circumstances, like the excess of catecholamines.

Acutely, hormones can play a crucial role such as in catecholamine-induced polymorphic VT, induced by exercise or in the long QT syndrome (LQTS), induced either by sleep, fear, or excitement. Often the challenge provided acutely by these hormones exceeds the safety margins (=reserve) of the vulnerable heart to overcome and ventricular arrhythmias ensue. Thus, endocrine disorders may play an acute role in the triggering of cardiac arrhythmias (Figure 1).

However, there are also chronic adaptations induced by endocrine disorders that can underlie the formation of arrhythmias. The action potential is controlled by numerous ion currents that either provides inward or outward currents. It is this delicate balance that shapes the
action potential and determines its duration, often measured as QT-duration. Overexpression or down-regulation of these ion currents can chronically increase or decrease conduction or repolarization reserve.

A few examples have been listed:

Diabetes mellitus: In an experimental model, mimicking diabetes type 1, it was demonstrated that this metabolic disorder reduced repolarization reserve by decreasing the outward current ‘slowly delayed rectifier (IKs)’ in the rabbit, thereby increasing the liability for drug induced Torsade de Pointes. More recently, it has been suggested that the transcription of ion channels due to the involvement of the P13K pathway is responsible for this reduced transcription.

Gender differences: The incidence and prevalence of AF and sustained ventricular arrhythmias and sudden cardiac death (SCD) are lower in women than in men. However, women have a greater chance to develop Torsade de Pointes arrhythmias. It has been shown that sex hormones account for most of the differences in the cardiac electrophysiological properties observed between females and males. Human data demonstrate that the expression of a number of potassium channels is reduced in females accounting for a prolonged duration of the ventricular action potential. Testosterone reduces the ventricular action potential duration (APD) by enhancing the slow delayed rectifier current and by increasing the l-type calcium current.

Adrenal dysfunction: Glucocorticoid has been reported to be important for the maintenance of membrane Calcium transport in the cardiac sarcoplasmic reticulum and for the regulation of various ion channels, including IKs, and the rapid delayed rectifier (IKr), thereby manipulating QT duration.

Management of arrhythmias in specific endocrine disorders

Diabetes mellitus

Diabetes mellitus (DM) type 1 (reduced insulin production) or type 2 (increased resistance to insulin) may increase the risk of cardiac arrhythmias via many factors including: (i) cardiovascular risk factors (e.g. hypertension), (ii) atherosclerotic cardiovascular disease (i.e. coronary artery disease), (iii) medications, (iv) autonomic dysfunction or dysautonomia.

Table 1 Scientific rationale of recommendations

<table>
<thead>
<tr>
<th>Definitions where related to a treatment or procedure</th>
<th>Consensus statement instruction</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific evidence that a treatment or procedure is beneficial and effective. Requires at least one randomized trial or is supported by strong observational evidence and authors’ consensus (as indicated by an asterisk)</td>
<td>‘Should do this’</td>
<td>![Green Heart]</td>
</tr>
<tr>
<td>General agreement and/or scientific evidence favour the usefulness/efficacy of a treatment or procedure. May be supported by randomized trials based on a small number of patients or which is not widely applicable</td>
<td>‘May do this’</td>
<td>![Yellow Heart]</td>
</tr>
<tr>
<td>Scientific evidence or general agreement not to use or recommend a treatment or procedure</td>
<td>‘Do not do this’</td>
<td>![Red Heart]</td>
</tr>
</tbody>
</table>

aThis categorization for our consensus document should not be considered as being directly similar to that used for official society guideline recommendations which apply a classification (I–III) and level of evidence (A, B, and C) to recommendations.

Figure 1 Mechanism of arrhythmias in endocrine disorders: The balance between the strength of the heart to de- or repolarize is often challenged by the autonomic nervous system. When the balance is off, the heart has to allow arrhythmias, which can be based upon numerous arrhythmogenic mechanisms. VF, ventricular fibrillation; VT, ventricular tachycardia.
artery disease (CAD), prior myocardial infarction (MI), stroke, or peripheral arterial disease,6–8 and (iii) DM-associated factors such as glucose control, diabetic neuropathy, or cardiomyopathy (Figure 2).6,9,10 The risk for arrhythmias or SCD in DM patients is closely related to the presence and severity of underlying cardiovascular disease,6,11–13 but the aforementioned DM-related factors could induce arrhythmias independently of cardiovascular comorbidities. Management of cardiac arrhythmias in DM patients is outlined in Figure 3.

Atrial fibrillation

Many epidemiological studies have reported an association of DM with incident AF.14,15 The duration of DM and glycaemic control were also associated with AF (each year with DM conferred a 3% increase in the risk of AF),16 whilst HbA1c of >9% was associated with a nearly two-fold increase in AF risk.17 A meta-analysis of 11 studies with a total of 108 703 AF cases in 1 686 097 subjects showed a 40% greater risk of AF in the presence of DM, but the effect was attenuated after adjustment for multiple risk factors [relative risk 1.24, 95% confidence interval (CI) 1.06–1.44], whilst the population-attributable estimate for AF owing to DM was 2.5% (95% CI 0.1–3.9).18 In several observational studies, the age-adjusted association of DM with incident AF was no longer significant after multiple adjustments for hypertension, cardiovascular comorbidity, body mass index, or obesity,19–21 thus suggesting that strategies for AF prevention in DM patients should focus on the control of DM-associated comorbidities (especially the weight and blood pressure control).19

Indeed, in the ADVANCE (Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation) study, DM patients with AF (7.6%) had significantly greater risks for all-cause death, cardiovascular death, major cerebrovascular events, and heart failure compared with DM patients without AF. Blood pressure lowering yielded similar relative risk reduction in all-cause and cardiovascular mortality but owing to their higher risk of these events, the absolute benefits from blood pressure control appeared much greater in AF patients.22 In the VALUE (Valsartan Antihypertensive Long-term Use Evaluation) trial, hypertensive patients with new-onset DM had higher rates of new-onset AF compared with non-DM patients and were at higher risk of heart failure.23 Hence, AF in DM patients should be viewed as a marker of adverse outcome, which should prompt aggressive management of all concomitant risk factors (Figure 3).24 Importantly, intensive glucose lowering (target HbA1c <6.0%) has been associated with similar incident AF rates as a less stringent approach (HbA1c <8.0%), but with increased risk of death and other cardiovascular events.17

Since asymptomatic (silent) AF is not uncommon, especially in patients with DM,25 at least opportunistic screening for AF with pulse palpation should be performed in DM patients, as also recommended

Figure 2 Arrhythmogenesis in diabetes mellitus. APD, action potential duration; CV, cardiovascular; DADs, delayed after depolarizations; EADs, early after depolarizations; dark blue, conditions; white, disorders; yellow, pathophysiologic and physiologic pathways; dark grey, contributing disorders and risk factors; pink, structural, cellular, and ion channel abnormalities; blue, mechanisms of arrhythmogenesis; red, electrophysiological abnormalities and arrhythmogenesis.
Figure 3 General principles of management of cardiac arrhythmias in patients with diabetes mellitus. AADs, antiarrhythmic drugs; ACEi, angiotensin-converting enzyme inhibitor; AFL, atrial flutter; AH1, apnoea-hypopnea index; ARB, angiotensin receptor blocker; AVNRT, atrioventricular nodal re-entrant tachycardia; AVRT, atrioventricular re-entrant tachycardia; BMI, body mass index; BP, blood pressure; CAD, coronary artery disease; CPAP, continuous positive airway pressure; CRT, cardiac resynchronization therapy; CV, cardiovascular; DM, diabetes mellitus; ECG, electrocardiogram; HT, hypertension; ICD, implantable cardioverter-defibrillator; LA, left atrium; LV, left ventricle; MRI, magnetic resonance imaging; NOACs, non-vitamin K antagonist oral anticoagulants; OAC, oral anticoagulant therapy; PM, pacemaker; SE, systemic embolism; VKA, vitamin K antagonist; VPBs, ventricular premature beats; VT ns, ventricular tachycardia non-sustained.
III. TREATMENT OF VENTRICULAR ARRHYTHMIAS IN DM

Non-sustained ventricular arrhythmias (VTns, VPBs)

SEARCH FOR UNDERLYING HEART DISEASE:
- 12-lead ECG
- Detailed clinical history
- Clinical examination
- Biochemistry
- 24-h Holter (VPBs quantification)
- Echocardiogram (LA morphology, LV systolic function)
- Other tests as needed (e.g., stress echo test)

SEARCH AND MANAGE CORRECTABLE FACTORS:
- Check glucose regulation
- Prevent/treat hypoglycemia
- Electrolyte imbalances
- Excess adrenergic stimulation, etc.

Suspected underlying heart disease
- Consider exercise test, stress echocardiography, perfusion scintigraphy, coronary angiography to document, characterize and treat underlying CAD.
- Consider MRI, myocardial biopsy, etc. for suspected cardiomyopathy, myocarditis

No underlying structural heart disease
- No need for routine AADs use for VPBs suppression
- Manage CV risk factors
- Re-check regularly for correctable factors

III. TREATMENT OF SUPRAVENTRICULAR ARRHYTHMIAS IN DM

Supraventricular arrhythmia

Determine SVT type

Atrial fibrillation, atypical AFL

Rate control
(to decrease symptoms and prevent complications)

Rhythm control
(to decrease symptoms, and/or per patient’s preference)

Assess OAC use (VKA or NOACs) to prevent stroke/SE and reduce mortality; Calculate CHA2DS2-VASC; Assess bleeding risk (HAS-BLED score) and manage modifiable bleeding risk factors

Consider catheter ablation in selected patients

Consider catheter ablation
Table 2 Randomized controlled trials of intensive vs. standard glycaemic control in adult patients with diabetes mellitus

<table>
<thead>
<tr>
<th>Study, year</th>
<th>Cohort size</th>
<th>Drug</th>
<th>Intensive glucose control</th>
<th>Follow-up</th>
<th>Study outcomes (intensive vs. standard glucose control)</th>
<th>Significant hypoglycaemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVANCE, 2008</td>
<td>11 140 DM type 2</td>
<td>Gliclazide</td>
<td>HbA1c <6.5%</td>
<td>Median 5 years</td>
<td>Microvascular events: 9.4% vs. 10.9%; HR 0.86 (0.77–0.97), P = 0.01</td>
<td>2.7% vs. 1.5%; HR 1.86 (1.42–2.40), P < 0.001</td>
</tr>
<tr>
<td>ACCORD, 2008</td>
<td>10 251 DM Type 2, known CV disease or CV risk factors</td>
<td>Various; The intensive regimen stopped early due to increased mortality</td>
<td>HbA1c <6.0%</td>
<td>Mean 3.5 years</td>
<td>All-cause death: 3.1% vs. 1.0%; P < 0.001</td>
<td></td>
</tr>
<tr>
<td>ACCORD, 2011</td>
<td>10 251 DM Type 2, known CV disease or CV risk factors</td>
<td>Various; The intensive regimen stopped early due to increased mortality</td>
<td>HbA1c <6.0%</td>
<td>Mean 3.5 years</td>
<td>All-cause death: 3.1% vs. 1.0%; P < 0.001</td>
<td></td>
</tr>
<tr>
<td>VADT, 2009</td>
<td>1791 military veterans; DM Type 2, 40% with previous CV event</td>
<td>Various; Open-label study</td>
<td>An absolute reduction for 1.5% points in HbA1c compared with standard glucose control</td>
<td>Median 5.6 years</td>
<td>Cardiovascular death: 0.96% vs. 0.95%; HR 0.86 (0.77–0.96), P = 0.01</td>
<td>21.2% vs. 9.9%, P < 0.001</td>
</tr>
</tbody>
</table>

*At 5-year follow-up, the rates of non-fatal MI were lower [1.18% vs. 1.42%, HR 0.82 (0.70–0.96), P = 0.01] but the rates of CV death (0.72% vs. 0.57%, HR 1.29 (1.04–1.60), P = 0.02) and all-cause death (1.53% vs. 1.27%, HR 1.19 (1.03–1.38), P = 0.02) were higher with intensive glucose control. Fatal arrhythmia: 0.1% vs. 0.4% 6-year event free rates, standard vs. intensive control: Cardiovascular death: 0.96% vs. 0.95%; HR 1.32 (0.81–2.14), P = 0.26; All-cause death: 0.88% vs. 0.87%; HR 1.07 (0.81–1.42), P = 0.62; Time to first occurrence of a CV event: HR 0.88 (0.74–1.05), P = 0.14
for all individuals aged >65 years. High-risk DM patients would likely benefit from an active screening for AF, but more data are needed to define optimal AF screening strategy(ies) in DM patients. Before treatment initiation, the presence of AF should be documented using a 12-lead electrocardiogram (ECG). In DM patients with established AF, ventricular rate control is recommended to decrease symptoms and prevent AF-related complications. In patients with persistent symptoms, despite adequate rate control, or in those with left ventricular dysfunction attributable to poorly controlled high ventricular rate, or as per patient’s preference, rhythm control strategy could be attempted including catheter ablation or cardioversion. Of note, DM has been associated with increased AF recurrence post successful cardioversion of persistent AF. For AF-related stroke risk management see Stroke risk assessment and prevention in arrhythmias associated with endocrine disorders.

Ventricular arrhythmias and sudden cardiac death
Compared with the general population, DM patients have an increased risk of both SCD and non-SCD. In a meta-analysis of 14 studies involving 346 356 participants and 5647 SCD cases, the risk of SCD was two-fold higher in patients with DM compared with non-DM patients [adjusted hazard ratio (HR) 2.25, 95% CI 1.7–2.97]. However, DM patients were also shown to be at nearly three-fold greater risk of non-SCD than non-DM patients (adjusted HR 2.90, 95% CI 1.89–4.46). Observational studies reported marked QTc prolongation, atypical microvolt T-wave alternans patterns, altered heart rate variability, or heart rate turbulence in DM patients, but none of these tests have been routinely used to stratify the risk for ventricular arrhythmias or SCD in clinical practice. Both hyper- and hypoglycaemia have been independently associated with increased risk of ventricular arrhythmias. Insulin-induced hypoglycaemia has been associated with nocturnal death (so-called ‘dead-in-bed syndrome’) in DM type 1, and arrhythmic deaths were reported in several DM type 2 trials (Table 2).

Table 2

<table>
<thead>
<tr>
<th>Study, year</th>
<th>Cohort size</th>
<th>Drug</th>
<th>Intensive glucose control</th>
<th>Follow-up</th>
<th>Study outcomes (intensive vs. standard glucose control)</th>
<th>Significant hypoglycaemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>NICE-SUGAR74, 2009</td>
<td>6104 critically ill patients</td>
<td>Insulin</td>
<td>Blood glucose 4.5–6.0 mmol/l</td>
<td>90 days</td>
<td>90-Day all-cause mortality: 27.5% vs. 24.9%; OR 1.14 (1.02–1.28), P = 0.02</td>
<td>6.8% vs. 0.5%, OR 14.7 (9.0–25.9), P < 0.001</td>
</tr>
<tr>
<td>ORIGIN52, 2013</td>
<td>12 537 DM Type 2 with additional CV risk factors</td>
<td>Insulin glargine</td>
<td>Normal glycaemia</td>
<td>Median 6.2 years</td>
<td>Severe hypoglycaemia vs. others: Composite of CV death/MI or stroke: HR 1.58 (1.24–2.02), P < 0.001</td>
<td>Annual rates of severe hypoglycaemia 0.9% vs. 0.3%</td>
</tr>
</tbody>
</table>

Hypoglycaemia-associated arrhythmias are difficult to document, but observational studies using continuous glucose monitoring (CGM) and Holter monitoring in small DM type 2 cohorts (n = 25) showed that hypoglycaemic episodes were common, often asymptomatic and associated with various arrhythmias.55,56 Compared with daytime hypoglycaemia, nocturnal episodes were more common and associated with greater risk for bradycardia or atrial ectopy, whilst ventricular arrhythmias were equally common.55 In contrast to animal studies,57 in a recent retrospective analysis of the ACCORD (Action to Control Cardiovascular Risk in Diabetes) trial, the use of beta-blockers in DM patients was associated with increased risk of severe hypoglycaemia and cardiovascular events.58 but more evidence is needed to inform optimal use of beta-blockers in DM patients without established CAD.59 Otherwise, the use of antiarrhythmic drugs should follow the general principles and precautions related to pharmacological treatment of cardiac arrhythmias.26,47

In high-risk patients with established cardiovascular disease and/or long-standing sub-optimally controlled DM type 2, a less stringent glycaemic control (i.e. a target HbA1c of ≤8%) is recommended,60 since intensive glycaemic control has been associated with increased risk of severe hypoglycaemic episodes counterbalanced by significant reduction only in microvascular but not macrovascular complications (e.g. MI, stroke, and mortality). The addition of empagliflozin61 or liraglutide62 to standard care should be considered in order to reduce cardiovascular and all-cause mortality or hospitalization for heart failure.63 In addition, the LEADER (Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results) trial data suggested that liraglutide may have a renal protective effect.62,64 Although cardiac arrhythmias were not specifically investigated in either LEADER or EMPA-REG OUTCOME (Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients)60 trial, an antiarrhythmic effect of these drugs (perhaps mediated via glucagon release stimulation) has been hypothesized to contribute to the reduced risk for cardiovascular death.61,62

The CANVAS Program data showed that the use of another sodium-glucose co-transporter 2 (SGLT2) inhibitor, canagliflozin, was associated with significantly lower risk of cardiovascular events and a renal protective effect compared with placebo in patients with DM type 2 and an elevated risk of cardiovascular disease.65 The incidence of cardiovascular events with dapagliflozin is currently investigated in the DECLARE-TIMI 58 trial,66 and a meta-analysis of 21 trials with this drug67 suggested the potential for a beneficial cardiovascular effect consistent with the multifactorial benefits on cardiovascular risk factors associated with other SGLT2 inhibitors.68,69 Concerning the cardiovascular effects of the SGLT1 inhibitors other than liraglutide (i.e. exenatide and lixisenatide), there was no significant difference in the rates of cardiovascular events with these agents compared with placebo in the respective trial.70,71

Consensus statements

<table>
<thead>
<tr>
<th>Diagnostic assessment of patients with DM type 1 and type 2 requires aggressive screening for and a detailed characterization of underlying cardiovascular risk factors, atherosclerotic cardiovascular disease and DM-related factors (i.e. glucose regulation, diabetic neuropathy, and cardiomyopathy), all of which may increase the risk of cardiac arrhythmias and SCD in DM patients</th>
<th>‘Should do this’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycaemic targets in patients with DM and cardiac arrhythmias should be defined individually, taking into account patient age, individual risk profile, life expectancy and patient values and preferences</td>
<td>‘Should do this’</td>
</tr>
<tr>
<td>Severe hypoglycaemia should be avoided in DM patients at risk of cardiac arrhythmias, owing to increased risk of malignant, potentially lethal ventricular arrhythmias and all-cause death</td>
<td>‘Should do this’</td>
</tr>
<tr>
<td>Intensive glucose control with target HbA1c of <7.0% (or even <6.0%) should not be attempted in elderly and/or high-risk DM patients, owing to increased risk of severe hypoglycaemia and neutral (or negative effect) on all-cause mortality</td>
<td>‘Do not do this’</td>
</tr>
<tr>
<td>Intense management of cardiovascular risk factors (e.g. obesity, dyslipidaemia, hypertension, obstructive sleep apnoea, etc.) in DM patients reduces the risk of cardiac arrhythmias (e.g. AF) by preventing (or slowing) the development of atherosclerotic cardiovascular disease and arrhythmogenic substrate</td>
<td>‘Should do this’</td>
</tr>
<tr>
<td>Incident AF in DM patients should be viewed as a marker of increased risk of adverse cardiovascular events and mortality. Intensive glucose control does not reduce the risk of AF, but aggressive management of cardiovascular risk factors may delay or prevent AF</td>
<td>‘Should do this’</td>
</tr>
<tr>
<td>Screening for silent AF by pulse palpation (with ECG confirmation) should be performed in all DM patients at each regular visit.</td>
<td>‘Should do this’</td>
</tr>
<tr>
<td>The use of (non-selective) beta-blockers in DM patients without established CAD may be weighed against the risk of severe hypoglycaemia</td>
<td>‘May do this’</td>
</tr>
</tbody>
</table>
Thyroid dysfunction

Thyroid dysfunction is associated with atrial and ventricular tachyarrhythmias, as well as bradyarrhythmias. Hyperthyroidism is accompanied by increased automaticity and triggered activity in the atria and pulmonary veins (PVs), while in hypothyroidism effective refractory periods of the atria, atrioventricular (AV) node, bypass tracts and His-Purkinje system are prolonged.75–77 Genetic mechanisms involving ion channels, and autoimmune mechanisms involving muscarinic and beta-adrenoreceptors, that are also linked to long-QT syndrome, may contribute to ventricular and atrial arrhythmias in thyroid dysfunction.8,79 Tachy- and bradyarrhythmia occurrence is different in hyperthyroidism and hypothyroidism, and the evidence on treatment is limited (Table 3–5).

Hyperthyroidism

Hyperthyroidism, overt or subclinical [i.e. reduced serum thyroid stimulating hormone (TSH) concentration but free thyroxine levels within reference ranges] (Table 3) is associated with increased risk of AF\textsuperscript{80–90; before and after establishment of the diagnosis, it is associated with increased risk of cardiovascular disease development.]91 Hypothyroidism, either overt or subclinical has been shown by several studies confer no AF risk,80,89,90 though lack of association is not well-established.92–97 Atrial fibrillation

Antithyroid treatment and attainment of euthyroid state should be the first line in management of AF in the setting of hyperthyroidism, as in most cases AF reverses spontaneously to sinus rhythm once euthyroid state is achieved, usually after 13–15 weeks of therapy.98–101 Treatment using antithyroid agents, radioiodine therapy, or thyroidectomy is accompanied by conversion to sinus rhythm in 75–100% of cases, but predictors of persistent arrhythmia are increased age, longer pre-treatment duration of AF and hyperthyroidism.99,100 For rate control of AF and as an adjunct to antithyroid therapy, non-selective beta-blockers like propranolol may be used, as they exert not only antisympathetic effects slowing heart rate but also reduce metabolic rate and affect triiodothyronine levels; in case of low-output heart failure they should be used cautiously or other short-acting beta-blockers without intrinsic sympathomimetic activity should be considered.102–104 It is reasonable to recommend cardioversion in patients with persistent AF after establishment of euthyroid state, and in case of recurrent AF when the patient is euthyroid, ablation should be considered.105,106–110 In patients with persistent AF related to hyperthyroidism, cardioversion results in restoration of sinus rhythm in 88–92.4%; in patients without accompanying structural heart disease, 86% and 67% of them were arrhythmia-free at 3 years and 6.7 years of follow-up, respectively.105,106

Hyperthyroidism-related AF usually has a lower recurrence rate than non-hyperthyroidism-related AF. In one study, where only electrical cardioversion was used, the risk of AF recurrence was 36% lower in hyperthyroidism than in non-hyperthyroidism AF (P = 0.004) and the only predictor of AF recurrence was the longer duration of arrhythmia (P < 0.01).107 Few studies have reported outcomes of AF ablation,108–110 with no difference in long-term (4 years) recurrence rate between hyperthyroidism and non-hyperthyroidism-related AF after PV isolation,109 while in another study recurrence was two-fold higher in hyperthyroid than in non-hyperthyroid patients after single procedure of PV isolation or substrate ablation, while after multiple procedures there was no difference.110

Hyperthyroidism does not independently confer higher risk for stroke/systemic embolic events as compared to non-hyperthyroid patients,111–113 and annual risk of stroke in hyperthyroid patients with AF is lower than in non-hyperthyroid patients.114 Warfarin reduced the risk of ischaemic stroke in non-self-limiting AF patients with hyperthyroidism and CHA\textsubscript{2}DS\textsubscript{2}VASc >1.114 Ventricular arrhythmias

While ventricular arrhythmias are rare in hyperthyroid patients; one of the earliest Holter monitoring studies did not demonstrate reduction of ventricular ectopy with antithyroid therapy.115 However, QT prolongation is described in Graves disease with thyrotoxicosis.116 Few cases of isolated VF without structural heart disease and electrolyte imbalance in hyperthyroidism have been reported,117 among them coronary vasospasm was confirmed in two, one case was due

<table>
<thead>
<tr>
<th>TSH levels (mIU/L)</th>
<th>Free thyroxine (pmol/L)</th>
<th>Total thyroxine (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euthyroidism</td>
<td>0.2–5.0</td>
<td>9–22</td>
</tr>
<tr>
<td>Overt hypothyroidism</td>
<td>>5.0</td>
<td><9</td>
</tr>
<tr>
<td>Subclinical hypothyroidism</td>
<td>>5.0</td>
<td>9–22</td>
</tr>
<tr>
<td>Overt hyperthyroidism</td>
<td><0.2</td>
<td>>22</td>
</tr>
<tr>
<td>Subclinical hyperthyroidism</td>
<td><0.2</td>
<td>9–22</td>
</tr>
<tr>
<td>TSH level dependent thyroid dysfunction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euthyroidism</td>
<td>0.4–5.0</td>
<td>9–22</td>
</tr>
<tr>
<td>High-normal euthyroidism</td>
<td>0.2–0.4</td>
<td>9–22</td>
</tr>
<tr>
<td>Subclinical hyperthyroidism (reduced TSH)</td>
<td>0.1–0.2</td>
<td>9–22</td>
</tr>
<tr>
<td>Subclinical hyperthyroidism (suppressed TSH)</td>
<td><0.1</td>
<td>9–22</td>
</tr>
</tbody>
</table>

TSH, thyroid stimulating hormone.
to amiodarone-induced toxicity and one case was accompanied by early repolarization. All cases were treated with antithyroid therapy, prednisolone, beta-blockers and in some cases an implantable cardioverter-defibrillator (ICD) was used. It should be noted also that antithyroid therapy might worsen early repolarization and arrhythmia.

Bradyarrhythmias

Bradyarrhythmias, AV block and sick sinus syndrome (SSS), are rare entities in hyperthyroid patients; one study reported that only 3% of AV block cases with pacemaker implantation were due to primary hyperthyroidism.

Hypothyroidism

Hypothyroidism is accompanied by ventricular arrhythmias and conduction disturbances. One case-control study of 152 hypothyroid and 152 euthyroid patients, revealed higher prevalence of VT (P = 0.04) and ventricular arrhythmias (P = 0.007) in hypothyroid patients and Torresades de Pointes with prolongation of QT interval and bradycardia may develop in hypothyroidism. It is advised to consider hypothyroidism in differential diagnosis of polymorphic VT. The VT/VF, accompanying hypothyroidism requires correction with thyroid hormones, DC shock in urgent cases, correction of electrolyte balance, and bradycardia if QT prolongation and Torsades de Pointes arrhythmia. If arrhythmia is sustained or recurs, the implantation of ICD could be considered.

Rarely, in patients with implanted pacemakers and ICDs, overt or subclinical hypothyroidism due to functional changes in tissue might increase pacing threshold or create exit block in atrial and ventricular pacing leads that usually are reversible by correction of thyroid status.

Conduction abnormalities in the setting of hypothyroidism are represented by fascicular blocks (14.2%), 1st degree AV block (11.9%), advanced AV block, and sinus node dysfunction. There are also case reports on advanced AV block of 2nd and 3rd degree reversed by thyroid replacement therapy and temporary pacemaker implantation in overt and subclinical hypothyroidism. Several reports describe underlying hypothyroidism playing a role in development of lithium-induced sinus node dysfunction, reversed after treatment of hypothyroidism. Treatment of subclinical hypothyroidism should follow the recent update on thyroid disease management.

Table 4 Evidence summary for arrhythmias associated with thyroid dysfunction

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Subjects</th>
<th>Follow-up</th>
<th>Thyroid dysfunction</th>
<th>Arrhythmia</th>
<th>Risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selmer et al.</td>
<td>Cohort</td>
<td>586 460</td>
<td>5.5 years</td>
<td>Euthyroidism</td>
<td>AF</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Overt hyperthyroidism</td>
<td>2.9%</td>
<td>IRR 1.42 (1.22–1.63)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subclinical hyperthyroidism</td>
<td>4.6%</td>
<td>IRR 1.31 (1.19–1.44)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Overt hypothyroidism</td>
<td>2.5%</td>
<td>IRR 0.67 (0.5–0.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subclinical hypothyroidism</td>
<td></td>
<td>IRR 0.87 (0.7–0.97)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TSH levels</td>
<td></td>
<td>IRR 1.16 (0.99–1.36)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reduced TSH</td>
<td></td>
<td>IRR 1.41 (1.35–1.89)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Suppressed TSH</td>
<td></td>
<td>IRR 1.12 (1.03–1.21)</td>
</tr>
<tr>
<td>Colett et al.</td>
<td>Meta-analysis</td>
<td>52 674</td>
<td>8.8 years</td>
<td>Subclinical hyperthyroidism</td>
<td>AF</td>
<td>HR 1.68 (1.16–2.43)</td>
</tr>
<tr>
<td>Thyroid studies</td>
<td></td>
<td></td>
<td></td>
<td>Reduced TSH</td>
<td></td>
<td>HR 1.63 (1.1–2.4)</td>
</tr>
<tr>
<td>collaborators</td>
<td></td>
<td></td>
<td></td>
<td>Suppressed TSH</td>
<td></td>
<td>HR 2.54 (1.08–5.99)</td>
</tr>
<tr>
<td>Kim et al.</td>
<td>Cohort</td>
<td>5055</td>
<td>10 years</td>
<td>TSH 0.45–4.5 μU/L–5.4</td>
<td>AF</td>
<td>Reference</td>
</tr>
<tr>
<td>Framingham Heart study</td>
<td></td>
<td></td>
<td></td>
<td>TSH 4.5–10.0 μU/L–7.0</td>
<td>Reference</td>
<td>HR 1.23 (0.77–1.97)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TSH 10–19.9 μU/L–4.0</td>
<td>Reference</td>
<td>HR 0.57 (0.21–1.54)</td>
</tr>
<tr>
<td>Brandt et al.</td>
<td>Observational cohort</td>
<td>2631 pts with hyperthyroidism</td>
<td>6 years</td>
<td>HyperthyroidismControls</td>
<td>CVD + arrhythmia 26%</td>
<td>HR 1.34 (1.15–1.56)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 524 controls 10 524 controls</td>
<td>67 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 524 controls 10 524 controls</td>
<td>81% female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kobayashi et al.</td>
<td>Summary of cases</td>
<td>10 pts w/o CVD and hypokalaemia</td>
<td>–</td>
<td>Hyperthyroidism</td>
<td>1 patient with amiodarone-induced thyroid dysfunction</td>
<td>VF isolated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 early repolarization</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 cases coronary vasospasm</td>
<td></td>
</tr>
</tbody>
</table>

AF, atrial fibrillation; CI, confidence interval; CVD, cardiovascular disease; HR, hazard ratio; IRR, incidence rate ratio; pts, patients; TSH, thyroid-stimulating hormone; VF, ventricular fibrillation.
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Subjects</th>
<th>Treatment</th>
<th>Follow-up</th>
<th>Arrhythmia after treatment</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of antithyroid treatment on arrhythmia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nakazawa et al.</td>
<td>Prospective</td>
<td>163 pts hyperthyroidism and AF</td>
<td>Antithyroid therapy - 9%</td>
<td>34 months</td>
<td>101 pts with spontaneous AF conversion to sinus rhythm upon attainment of euthyroidism</td>
<td>Intervals between return to euthyroidism and spontaneous AF conversion to sinus rhythm <1 week 43% 1-3 weeks 75.2% 4-6 weeks – 87.1% 7-9 weeks – 93.1% 10-12 weeks – 97% 13–15 weeks 100% >16 weeks -100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>46.7 years</td>
<td>RIT + antithyroid therapy - 87%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thyroidectomy 3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhou et al.</td>
<td>Prospective</td>
<td>94 pts hyperthyroidism</td>
<td>Radioiodine therapy</td>
<td>1.6 years</td>
<td>PAF: 0%</td>
<td>Predictors of pers. AF Age >55 years RR 2.76, 1.16–8.79, (P < 0.01) Duration of hyperthyroidism RR 3.08, 1.22–11.41, (P < 0.01) Duration of pre-treatment AF RR 2.96, 1.31–7.68, (P < 0.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41.2 years</td>
<td></td>
<td></td>
<td>Pers. AF: 60%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tsymbaluk et al.</td>
<td>Prospective</td>
<td>61 pts hyperthyroidism due to Graves disease</td>
<td>Antithyroid therapy</td>
<td>Euthyroid state</td>
<td>AF: 25%</td>
<td>AF rate before and after antithyroid therapy 72% to 25%, (P < 0.001) PAC: 71–7%, (P < 0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PAC: 7%</td>
<td></td>
</tr>
<tr>
<td>Gauthier et al.</td>
<td>Retrospective</td>
<td>40 pts with hyperthyroidism due to GD and 40 euthyroidism multinodular goiter</td>
<td>Thyroidectomy</td>
<td>Before and after operation</td>
<td>AF: 0 (sinus rhythm in 100%) Sinus tachycardia 68.8%</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of persistent AF after antithyroid treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nakazawa et al.</td>
<td>Prospective</td>
<td>33 pts with persistent AF</td>
<td>Cardioversion after Antithyroid treatment for hyperthyroidism</td>
<td>35 months</td>
<td>AF—12% SR—88%</td>
<td>AF free survival—86%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nakazawa et al.</td>
<td>Retrospective</td>
<td>106 pts with persistent AF w/o SHD</td>
<td>Cardioversion after Antithyroid treatment for 3 months for hyperthyroidism</td>
<td>6.7 years</td>
<td>AF—7.6% SR—92.4%</td>
<td>Predictor of AF recurrence Duration of AF HR 1.6 (1.14–2.26), (P = 0.005) Late follow-up: SR—67% (P < 0.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47.6 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siu et al.</td>
<td>Prospective case-controlled</td>
<td>116 pts 58 hyperthyroidism-related persistent AF 58 non-hyperthyroidism AF</td>
<td>ECV after Antithyroid treatment for 3 months for hyperthyroidism</td>
<td>24 months</td>
<td>–</td>
<td>AF recurrence Hyperthyroidism—59% Non-hyperthyroidism—83% Risk of AF recurrence hyperthyroidism vs non-hyperthyroidism HR 0.64 (0.39–0.97), (P = 0.004) Predictor of AF recurrence Longer duration of AF HR 1.01 (1.0–1.01), (P < 0.01)</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Subjects</th>
<th>Treatment</th>
<th>Follow-up</th>
<th>Arrhythmia after treatment</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machino et al.</td>
<td>Prospective</td>
<td>337 pts Persistent AF with history of hyperthyroidism 4.7% (16) w/o hyperthyroidism 95.3% (321)</td>
<td>First AF ablation (PVI) after 3 months of antithyroid therapy for hyperthyroidism</td>
<td>4 years</td>
<td>—</td>
<td>AF recurrence hyperthyroidism—44% no hyperthyroidism—43% Predictors of AF recurrence hyperthyroidism HR 0.87 (0.40–1.88), P = 0.73</td>
</tr>
<tr>
<td>Wongcharoen et al.</td>
<td>Prospective</td>
<td>717 pts First AF ablation (PVI and substrate modification 12%) >3 month treatment of hyperthyroidism before ablation</td>
<td>—</td>
<td>AF</td>
<td></td>
<td>Predictor of AF recurrence after single procedure: History of hyperthyroidism OR 2.07 (1.27–3.38) AF recurrence did not differ after multiple procedures</td>
</tr>
<tr>
<td>Stroke risk in hyperthyroidism-related AF</td>
<td>Chan et al.</td>
<td>Observational cohort AntiT and risk of ischemic stroke in hyperthyroidism-related AF</td>
<td>Of 9727 pts with non-valvular AF 642 (6.6%) pts with hyperthyroidism 136 pts—warfarin 243—aspirin 263—no AntiT 71.9 years 67.8% female</td>
<td>Hyperthyroidism vs non-hyperthyroidism</td>
<td>2 years</td>
<td>Non-valvular AF</td>
</tr>
<tr>
<td>Bruere et al.</td>
<td>Prospective</td>
<td>8962 pts with AF 141 hyperthyroidism history 510 hypothyroidism history 8271 euthyroidism</td>
<td>929 days</td>
<td>AF</td>
<td></td>
<td>Stroke SE hyperthyroidism HR 0.83 (0.41–1.76) hypothyroidism HR 0.98 (0.73–1.34) Bleeding hypothyroidism HR 1.3 (1.02–1.79)</td>
</tr>
<tr>
<td>Friberg et al.</td>
<td>Swedish Atrial Fibrillation Cohort Study</td>
<td>90 490 patients No anticoagulation at baseline</td>
<td>Thyroid disease 84 Thyrotoxicosis 553 pts</td>
<td>1.5 years</td>
<td>AF</td>
<td>Ischaemic stroke Thyroid disease HR 0.95 0.70–1.19 Thyrotoxicosis HR 0.92 (0.85–1.05) Stroke/TIA/systemic emboli Thyroid disease HR 1.00 (0.92–1.09) Thyrotoxicosis HR 1.03 (0.83–1.28)</td>
</tr>
<tr>
<td>Petersen et al.</td>
<td>Retrospective</td>
<td>610 patients Hyperthyroidism Stroke Within 1 year after 1 year</td>
<td>AF - 91 (14.9%)</td>
<td>AF</td>
<td></td>
<td>Stroke, n 1st year after 1st year Sinus rhythm 8 7 AF 5 7</td>
</tr>
</tbody>
</table>

AF, atrial fibrillation; AIT, amiodarone-induced toxicity; AntiT, antithrombotic therapy; CA, catheter ablation; CI, confidence interval; CVD, cardiovascular disease; ECV, electrical cardioversion; HR, hazard ratio; IRR, incidence rate ratio; OR, odds ratio; pts, patients; RIT, radioiodine therapy; RR, relative risk; TIA, transient ischaemic attack; TSH, thyroid stimulating hormone; VT, ventricular tachycardia; VF, ventricular fibrillation.
Amiodarone-induced thyroid dysfunction

About 10.3–14.7% of patients taking amiodarone for treatment of ventricular and atrial tachyarrhythmias, and 16.7% of patients receiving amiodarone for control of inappropriate ICD shocks develop amiodarone-induced thyroid dysfunction (Table 6). Amiodarone-induced thyroid dysfunction manifests as amiodarone-induced hyperthyroidism with two distinctive types: type 1, which develops in presence of underlying thyroid disease with excessive hormone production in response to iodide load associated with amiodarone leading to true hyperthyroidism and type 2, destructive thyroiditis that develops due to direct toxic effects if iodine associated with amiodarone. Differential diagnosis of two types of hyperthyroidism usually is done using ultrasonography, thyroid I\(^{131}\) uptake and thyroid [99m Tc] 2-methoxy-isobutylisonitrile (MIBI) scintigraphy. Management of amiodarone-induced thyroid dysfunction depends on above-mentioned types of dysfunction, with hormone replacement therapy for amiodarone-induced hypothyroidism, antithyroid medications for amiodarone-induced hyperthyroidism, type 1 and steroids for amiodarone-induced hyperthyroidism type 2 (thyroiditis), and use of antithyroid medications and steroids in cases of coexistence of hyperthyroidism and thyroiditis. Generally, accepted approaches in prevention and early detection of amiodarone-induced thyroid dysfunction are baseline assessment of thyroid function (thyroxine and TSH levels) before initiation of amiodarone treatment and periodic monitoring of thyroid function (within 3 months after initiation and every 3–6 months thereafter), though latest studies demonstrated conflicting results, with no association of amiodarone-induced thyroid dysfunction occurrence and periodic testing of thyroid hormones, it should be mentioned also that 49.5% of patients had detectable abnormalities in thyroid function tests prior to development of amiodarone-induced dysfunction.

Thyroid stimulating hormone receptor autoantibody test and ultrasonography may be used for differential diagnosis of type I and type II thyroid dysfunction.

Overt thyroid dysfunction occurs in 3.6–3.7% of patients receiving amiodarone for prevention of SCD and 10.3–14.7% of patients receiving amiodarone for treatment of ventricular arrhythmias and AF and 16.7% of patients taking amiodarone for control of inappropriate ICD shocks. Meta-analyses of RCTs on secondary prevention of SCD and adverse effects of amiodarone in patients treated for ventricular arrhythmias reported 4.2–5.7-fold increased risk of thyroid dysfunction and 1.78–2.18 times higher risk for development of bradycardia and electrolyte imbalance; avoid antiarrhythmic drugs that prolong the QT interval. In acute cases, DC shock may be necessary. If VT/VF persists, therapy with an ICD should be considered.

Correction of thyroid dysfunction with restoration of euthyroid state is one of the primary goals in the treatment of tachy- and bradyarrhythmias associated with hyperthyroidism or hypothyroidism

Correction of subclinical forms of thyroid dysfunction associated with tachy- and bradyarrhythmias may be required

Referral to endocrinologists should be considered for selection of appropriate thyroid function therapy (thyroid suppressive therapy, radioiodine therapy, and thyroidectomy)

Hyperthyroidism-related AF that persists after euthyroid condition has been achieved (>3 months of thyroispressive therapy) should be managed using cardioversion or ablation for rhythm control.

Antithrombotic therapy should be applied as for non-hyperthyroid-AF

Rare cases of VT/VF in the setting of hyperthyroidism should be managed using antiarrhythmics (caution with amiodarone—see below), DC shock in cases of hemodynamic compromise and therapy with an ICD if indicated. Associated conditions—coronary vasospasm, early repolarisation, amiodarone toxicity should be taken in account

Severe bradyarrhythmias accompanying hyperthyroidism and hypothyroidism might require use of temporary pacemaker; in persistent cases, after restoration of euthyroid condition, bradyarrhythmias should be managed according to the current guidelines

VT/VF accompanying hypothyroidism associated with long QT interval should be managed with correction of bradycardia and electrolyte imbalance; avoid antiarrhythmic drugs that prolong the QT interval. In acute cases, DC shock may be necessary. If VT/VF persists, therapy with an ICD should be considered

Monitoring and correction of thyroid dysfunction may be considered if lead dysfunction/change in atrial or ventricular pacing thresholds appear in patients with implanted pacemakers and ICDs
Table 6 Summary of evidence for amiodarone-induced thyroid dysfunction

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Population</th>
<th>Follow-up</th>
<th>Thyroid dysfunction/toxicity, arrhythmia</th>
<th>Predictors of toxicity OR/RR/HR (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piccini et al.(^{149})</td>
<td>Met-analysis 15 RCTs of amio vs. placebo efficacy in prevention of SCD, safety</td>
<td>8522 pts</td>
<td>12–45.5 months</td>
<td>Thyroid 3.6% vs. 0.4% Pulmonary 2.9% vs. 1.5% Hepatic 1.85% vs. 0.7% Bradycarrhythmias 2.8% vs. 1.5%</td>
<td>OR 5.68 (2.94–10.98), P < 0.0001 OR 1.97 (1.27–3.04), P = 0.002 OR 2.1 (1.15–3.82), P = 0.015 OR 1.78 (1.16–2.72), P = 0.008 Amio discontinuation rate 31.6%</td>
</tr>
<tr>
<td>Vorperian et al.(^{160})</td>
<td>Meta-analysis 4 RCTs amio vs. placebo Adverse effects</td>
<td>738 pts</td>
<td>12–45 months</td>
<td>TD 3.7% vs. 0.4% Bradycardia 3.3% vs. 1.4% Discontinuation rate 22.9% vs. 15.4% Skin: 2.3% vs. 0.7% Eye: 1.5% vs. 0.1%</td>
<td>OR 4.23 (2.04–8.74), P = 0.001 OR 2.18 (1.11–4.27), P = 0.024 OR 1.60 (1.23–2.09), P < 0.0001 OR 2.48 (1.05–6.17), P = 0.05 OR 3.42 (1.22–3.64), P = 0.02</td>
</tr>
<tr>
<td>Bathcer et al.(^{151})</td>
<td>RCT substudy of SAFE-T Substudies</td>
<td>612 pts with persistent AF Amio vs Sotalol+ placebo</td>
<td>1–4.5 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ross et al.(^{152})</td>
<td>Cohort study</td>
<td>163 patients</td>
<td>679 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kinoshita et al.(^{155})</td>
<td>Retrospective cohort study For overt thyroid dysfunctions Indication for amio VA: 66.7–80% AA: 20–33.3%</td>
<td>317 pts</td>
<td>5 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahmed et al.(^{153})</td>
<td>Prospective</td>
<td>303 pts Amio for: AF-260 pts, VA: 43 pts 63 years, 66% males</td>
<td>3.3 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee et al.(^{154})</td>
<td>Retrospective Amio vs sotalol and beta-</td>
<td>55 pts with ICD</td>
<td>4 years</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Population</th>
<th>Follow-up</th>
<th>Thyroid dysfunction/arrhythmia</th>
<th>Predictors of toxicity OR/RR/HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shiga et al.</td>
<td>Prospective</td>
<td>232 pts amio therapy</td>
<td>2 years</td>
<td>Dose reduction in amiodarone induced toxicity as compared to euthyroid state</td>
<td>Hypothyroidism 10.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No change in arrhythmia recurrence and plasma amio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hyperthyroidism 12.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VT/VF recurrence: euthyroid 1 vs. hyperthyroid 9 pts, P < 0.01; VPC three-fold increase, P < 0.05, No change in plasma amio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hypothyroidism: 12-L-thyroxine, no discontinuation of amio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>hyperthyroidism: 6 methimazole, 2 prednisolone, 3 amio discontinuation, 18—gradual improvement</td>
</tr>
<tr>
<td>Czarnywojtek et al.</td>
<td>Cohort</td>
<td>297 cases amio</td>
<td>12 months</td>
<td>Recurrence of hypothyroidism after RIT: A: 53.8%, B: 33.9%, C: 34.1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Recurrence of hyperthyroidism after RIT: A: 7.7%, B: 12.5%, C: 11.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABC: reinstated amio after 3–6 weeks of RIT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D: permanent hypothyroidism—thyroxine replacement therapy</td>
</tr>
<tr>
<td>Diederichsen et al.</td>
<td>RCT double-blind placebo-controlled</td>
<td>212 patients after catheter ablation of AF without history of thyroid dysfunction</td>
<td>6 months</td>
<td>Thyroid dysfunction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amio discontinuation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amio group—3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Placebo—1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amio group significantly higher TSH, fT4 and T4 and lower fT3 and T3 at 1 and 3 months as compared to placebo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TD after 1 month of amio treatment</td>
</tr>
</tbody>
</table>

AA, atrial tachyarrhythmias; **AF**, atrial fibrillation; **Amio**, amiodarone; **CI**, confidence interval; **CVD**, cardiovascular disease; **DM**, diabetes mellitus; **ECV**, electrical cardioversion; **HR**, hazard ratio; **ICD**, implantable-cardioverter defibrillator; **IRR**, incidence rate ratio; **LVEF**, left ventricular ejection fraction; **OR**, odds ratio; **pts**, patients; **RCT**, randomized controlled trial; **RIT**, radioactive therapy; **RR**, relative risk; **subcl.**, subclinical; **SVT**, supraventricular tachycardia; **TD**, thyroid dysfunction; **TSH**, thyroid stimulating hormone; **VA**, ventricular arrhythmia; **VPC**, ventricular premature complexes; **VT**, ventricular tachycardia; **VF**, ventricular fibrillation.
4th of patients discontinued amiodarone treatment. Amiodarone-induced thyroid dysfunction includes overt and subclinical hypothyroidism and hyperthyroidism,151,152 although changes in thyroid hormone levels in euthyroid patients on amiodarone treatment are common without clinical manifestations of amiodarone-induced thyroid dysfunction.142 In the SAFE-T (Sotalol-Amiodarone Fibrillation Efficacy) trial, overt hypothyroidism developed in 5.0%, subclinical hypothyroidism in 25.8% and overt hyperthyroidism in 5.3% and it’s subclinical form only in one patient in amiodarone arm that were significantly higher than in control arm receiving sotalol or placebo for treatment of persistent AF ($P < 0.05$ for all).151 In another cohort study of patients receiving amiodarone for ventricular and atrial tachyarrhythmias, subclinical and overt hypothyroidism developed in 7.4% and 8% of patients, respectively; and subclinical and overt hyperthyroidism in 0.6% and 6.7%, respectively, after 943 days of treatment.152 Though the evidence on predictors of amiodarone-induced thyroid dysfunction is limited, two studies153,155 addressed the issue of identifying patients at risk of thyroid dysfunction: in one study, patients with low thyroxine and high TSH levels were at risk of hypothyroidism development, while patients with dilated cardiomyopathy and sarcoidosis had 3.3 and 6.47-fold increased risk of hyperthyroidism development,155 it should be noted that patients with subclinical thyroid dysfunction at baseline were also included in the study. In another prospective study of patients with AF and ventricular arrhythmias receiving amiodarone, 8% of patients developed hyperthyroidism and 6% of patients—hypothyroidism during 3.3 years of follow-up, and the only predictor for development of hyperthyroidism was age <62 years, while hyperthyroidism risk was associated with TSH levels >1.4 mU/L, low ejection fraction and DM.153

In summary, amiodarone-induced overt thyroid dysfunction occurs in approximately 10.3–14.7% of patients with arrhythmias receiving amiodarone and should be suspected if symptoms of toxicity develop, including tachy- and bradyarrhythmias, other organs lesions and change in thyroid tests (Table 3).

Of note, amiodarone-induced thyroid dysfunction depends neither on dose,150 nor on plasma concentration of amiodarone,156 but tachy- and bradyarrhythmias may occur. Holter monitoring study in patients with VT/VF receiving amiodarone treatment demonstrated statistically significant increase in recurrence of VT and ventricular premature complexes in hyperthyroid state when compared with baseline euthyroid state,156 and in rare cases of thyroid storm VT/VF may develop.128 Withdrawal of amiodarone and switching to other antiarrhythmic drugs can be effective in treatment of VT/VF episodes due to amiodarone-induced thyroid dysfunction.157

Bradyarrhythmias usually occur in hypothyroidism, AV block tends to develop in presence of pre-existing conduction abnormality.77

<table>
<thead>
<tr>
<th>Recommendations on management of amiodarone-induced thyroid dysfunction</th>
<th>Consensus statement instruction</th>
<th>Level of evidence</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before prescribing amiodarone therapy for long-term use it is recommended to weigh risk/benefit of its toxicity and strongly consider catheter ablation to cure or modify the substrate for arrhythmias instead</td>
<td>'Should do this'</td>
<td>145,149–151</td>
<td></td>
</tr>
<tr>
<td>It is recommended to carry out baseline thyroid tests (thyroxine and TSH) before initiation of amiodarone treatment; thyroid-directed autoantibodies and ultrasonography should be considered for differential diagnosis of type I and type II amiodarone-induced hyperthyroidism.</td>
<td>'Should do this'</td>
<td>116,117,119,120,142,143,145–147,163</td>
<td></td>
</tr>
<tr>
<td>It is advised to monitor thyroid function tests and ECG for amiodarone-induced thyroid dysfunction screening</td>
<td>'Should do this'</td>
<td>145,147,148</td>
<td></td>
</tr>
<tr>
<td>If hyperthyroidism occurs during treatment with amiodarone, its discontinuation MANDATORY. The eventual decision to initiate or continue amiodarone once the euthyroid state is achieved for preventing life-threatening ventricular tachyarrhythmias should be carefully evaluated in each individual case in terms of expected risk and benefits. Hypothyroidism should be treated with thyroid replacement agents, and amiodarone therapy may be continued if necessary.</td>
<td>'Do not do this'</td>
<td>142,143,145,154,161,165</td>
<td></td>
</tr>
<tr>
<td>In case of VT/VF withdraw amiodarone and treat using antiarrhythmics and DC shock, if hemodynamic compromise.</td>
<td>'Should do this'</td>
<td>128,156</td>
<td></td>
</tr>
<tr>
<td>The use of amiodarone in elderly patients increases the risk of bradyarrhythmias, such as advanced AV block or SSS, requiring a permanent pacemaker.</td>
<td>'Should do this'</td>
<td>141,160</td>
<td></td>
</tr>
</tbody>
</table>
Amiodarone-induced thyroid dysfunction may manifest as SSS, constituting 22% of all causes of SSS. In some circumstances, correction of thyroid dysfunction in patients with AF and bradycardia developed on amiodarone treatment unmasks underlying tachycardia-bradycardia syndrome.159

Withdrawal of amiodarone therapy should be strongly considered in cases of hyperthyroidism; proper management of VT/VF, AV block and SSS is required. In a study of amiodarone-induced thyroid dysfunction in patients receiving amiodarone for prevention of inappropriate shocks, dose reduction of amiodarone was adequate to reduce signs of amiodarone-induced thyroid dysfunction.154 Latest studies on use of antithyroid therapy in patients requiring long-term amiodarone treatment (ventricular/atrial arrhythmias or inappropriate shock reduction in ICD patients) demonstrated that application of antithyroid radiiodine therapy might be an option to reinstitute amiodarone treatment161; radiiodine ablation of thyroid is also an option in amiodarone-induced thyroid dysfunction with resistant tachyarrhythmias.162

It is recommended also to weigh the risk of amiodarone-induced thyroid dysfunction before considering the long-term treatment or prefer treatment like catheter ablation. Monitoring of thyroid function every 6 months and electrocardiogram follow-up in patients on amiodarone therapy should be considered.145,148,163

Pheochromocytoma

The prevalence of pheochromocytoma (PCC) discovered during life is 0.15–0.4%; however, many cases remain undiscovered as the prevalence noted in autopsy studies is higher.166 The clinical picture ranges from totally asymptomatic patients to life-threatening complications including MI, severe heart failure, Tako-tsubo cardiomyopathy, and arrhythmias. Typically, additional release of catecholamines by PCC is accompanied by paroxysmal headache, sweating, hypertension, and palpitations. Therefore, recurrent arrhythmias in such clinical context should raise the suspicion of PCC. Palpitations are present in one-half to 70% of patients.167

Arrhythmia mechanisms include beta-adrenergic stimulation of the heart, alpha1-adrenergic stimulation (especially during myocardial ischemia and reperfusion),168 desensitization of adrenergic cardiovascular receptors due to prolonged adrenergic stimulation and reflex increase in vagal tone. Most often sinus tachycardia is encountered. However, a large spectrum of arrhythmias could be part or the first clinical manifestation of PCC, before typical signs are present. It includes mostly supraventricular arrhythmias and AF but also malignant and bidirectional VT.169 Some PCC patients manifest with reflex bradycardia, asystole, AV dissociation, Wolf-Parkinson-White syndrome or SSS.170 Patients with PCC may present with repolarization abnormalities consisting of marked QT prolongation and deep, wide inverted T wave171 with subsequent risk for Torsades des Pointes.

Esmolol, a beta1-adrenergic cardioselective blocker with rapid onset of action can be used to control fast rate due to AF or atrial flutter (0.5 mg/kg iv followed by continuous infusion of 0.1–0.3 mg/kg/min).170 Associated alpha-blockade (i.e. phenoxybenzamine 10 mg once to 10–30 mg twice or a1 blockade with prazosin—starting with 1 mg and increasing to 1 or 2 mg two or three times daily) may be used to prevent the incidence of hypertensive crisis during beta blockade. There is no specific treatment for other arrhythmias and VT could respond to lidocaine.172

<table>
<thead>
<tr>
<th>Recommendations on management of PCC</th>
<th>Consensus statement instruction</th>
<th>Level of evidence</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pheochromocytoma should be considered as possible diagnosis in patients with paroxysmal headache, hypertension, palpitations, and recurrent arrhythmia</td>
<td>‘Should do this’</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>Esmolol should be used to control rapid rate in AF and flutter. Associated alpha blockade is mandatory to prevent hypertensive crisis</td>
<td>‘Should do this’</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>Lidocaine may be used to treat sustained VT</td>
<td>‘May do this’</td>
<td>169,172,173</td>
<td></td>
</tr>
<tr>
<td>As PCC can prolong QTc interval, antiarrhythmic drugs prolonging the QTc should be used with caution and only after QTc monitoring</td>
<td>‘Should do this’</td>
<td>171</td>
<td></td>
</tr>
</tbody>
</table>
Growth hormone dysfunction

Acromegaly

Acromegaly is a rare and debilitating disease with a prevalence of 40 per million, characterized by increased growth hormone (GH) and insulin-like growth factor-1 (IGF-1). Early clinical trials have demonstrated a two-fold increase in overall mortality in patients with acromegaly when compared with general population, with cardiovascular causes accounting for 40–60% of all deaths. Acromegalic cardiomyopathy is characterized by biventricular hypertrophy progressing to diastolic and systolic dysfunction culminating in heart failure in 10% of patients. Recent cohorts, with patients treated early in the disease course, suggest lower rates of cardiovascular involvement. Classically, mononuclear cell infiltration, apoptosis, myofibrillary abnormalities, interstitial fibrosis, oedema, and cardiomyocyte hypertrophy are characteristic of acromegalic cardiomyopathy and may represent the histological substrate for arrhythmias.

Cardiac arrhythmias in acromegaly

There is paucity of data on the prevalence and severity of cardiac arrhythmias in acromegaly. Supraventricular arrhythmias are uncommon in patients with acromegaly with one study reporting supraventricular arrhythmias in 6/27 patients while two other show absence of any increase. Asymptomatic sinus node disease has also been described in a small proportion of patients in another study. However, complex ventricular ectopy is common, occurring in 40–48% of acromegalic patients and increasing with exercise. The ventricular ectopy increased with duration of acromegaly and severity of ectopy correlated with left ventricular mass but not GH levels. Sustained VT and sudden death has been reported in patients with acromegaly with severe cardiomyopathy. Late potentials are common in acromegalic cardiomyopathy and correlate with frequency of ventricular ectopy. Similarly, greater QT dispersion (dQT) and prolonged QTc interval are seen in active acromegaly and may predispose to ventricular tachyarrhythmia.

Impact of acromegaly specific treatment on cardiac arrhythmias

There is lack of longitudinal studies evaluating the impact of treatment of acromegaly on associated cardiac arrhythmia. However, there is indirect evidence to suggest that control of acromegaly in early stages may decrease cardiac remodelling, ventricular arrhythmia, and cardiac mortality.

Growth hormone deficiency

Growth hormone deficiency is diagnosed in 0.1% of the population in general clinical practice and is characterized by the short stature, frontal bossing, central obesity, and high-pitched voice. Growth hormone deficiency usually manifests early in childhood, while in adults it may be accompanied by increased sensitivity to insulin in patients with diabetes and manifests with fine wrinkling around eyes and mouth. Deficiency of GH, adrenocorticotropic hormone and gonadotropin, and hypothyroidism are common in hypopituitarism. Though rarely, tachy- and bradyarrhythmias may accompany GH deficiency. In one prospective study of pituitary hormone levels in patients who underwent
cardiopulmonary resuscitation due to VT/VF, GH deficiency was present in 27.5% of them, with (GH)-IGF-1 being significantly lower in a group of patients with GH deficiency when compared with group of patients with normal GH values. There are also reports on increased cardiovascular morbidity in children with GH deficiency treated with GH, due to cardiomegaly. A complete AV block was described in a child with GH deficiency during therapy with hGH, treated successfully by pacemaker implantation.

Thus, cardiac evaluation and monitoring is reasonable in patients with GH deficiency and during its therapy.

Diseases of adrenal cortex

Hyperaldosteronism

Primary hyperaldosteronism (PH) also known as Conn’s disease, is an endocrine disorder caused by an adrenal adenoma (uni- or bilateral). It causes hypertension, hypokalaemia, metabolic alkalosis, and renin suppression. Long-standing PH has been associated with myocardial injury, leading to heart failure and either atrial or ventricular arrhythmias.

Figure 4 summarizes the effect of aldosterone on the cardiovascular system.

Management of PH associated arrhythmias focuses on controlling metabolic and electrolyte disturbances. Deleterious cardiovascular effects can be controlled by either performing aldosterone receptor blockade or adrenalectomy.

Tables 7 and 8 summarize PH-related arrhythmias.

Specific data on indications for device implantation in PH patients is very limited and general guideline recommendations apply for this population. The main treatment approach for this condition is either surgical resection of the adrenal adenoma or pharmacological therapy targeting adrenal hyperplasia.

Adrenal insufficiency

Primary adrenal insufficiency (PAI), also known as Addison’s disease, is characterized by corticosteroid and mineralocorticoid deficiency. Patients with PAI typically present with hyponatraemia, hyperkalaemia, hypoglycaemia, and hyperpigmentation. Cardiac manifestations include hypotension, syncope, arrhythmias, and cardiomyopathy. Acute exacerbations are called Addisonian crises.

Table 9 summarizes the most common cardiac abnormalities and ECG findings, which are usually reversible with definitive treatment of the underlying cause.

Table 7 Electrocardiographic disorders associated with PH

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of study</th>
<th>Number of patients (n)</th>
<th>AF (%)</th>
<th>VT (%)</th>
<th>Sustained arrhythmias (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milliez et al.</td>
<td>Case control</td>
<td>124</td>
<td>7.3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Catena et al.</td>
<td>Prospective cohort</td>
<td>54</td>
<td>NA</td>
<td>NA</td>
<td>15</td>
</tr>
<tr>
<td>Born et al.</td>
<td>Retrospective cohort</td>
<td>640</td>
<td>7.1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Mulatero et al.</td>
<td>Case control</td>
<td>270</td>
<td>NA</td>
<td>NA</td>
<td>7.8</td>
</tr>
<tr>
<td>Savard et al.</td>
<td>Case control</td>
<td>459</td>
<td>3.9</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

AF, atrial fibrillation; NA, data not available; PH, primary hyperaldosteronism; VT, ventricular tachycardia.

Table 8 Description of the most important studies on PH

Recommendations

<table>
<thead>
<tr>
<th>Consensus statement instruction</th>
<th>Level of evidence</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary hyperaldosteronism patients with atrial or ventricular arrhythmias should receive treatment for stabilization of their electrolyte and metabolic disturbances</td>
<td>‘Should do this’</td>
<td>216,217</td>
</tr>
<tr>
<td>In PH patients with persistent rhythm abnormalities or myocardial damage, pacemakers or high voltage devices may be used according to life expectancy and response to optimal medical therapy</td>
<td>‘May do this’</td>
<td>218,225,226</td>
</tr>
</tbody>
</table>
Table 9 Cardiac abnormalities associated with PAI

| Patients with PAI and ECG changes should be treated for electrolyte and metabolic disturbances |
| Patients with PAI in the setting of dilated cardiomyopathy and/or heart failure who receive optimal medical therapy should be started on hydrocortisone and fludrocortisone. Fludrocortisone should be used with caution because; excessive fluid retention may lead to, or worsen heart failure symptoms |
| Patients with PAI and persistent rhythm abnormalities or myocardial damage may be candidates for pacemakers or high voltage device therapy based on life expectancy and response to optimal medical therapy |

Recommendations **Consensus statement instruction** **Level of evidence** **References**

Patients with PAI and ECG changes should be treated for electrolyte and metabolic disturbances ‘Should do this’ 230
Patients with PAI in the setting of dilated cardiomyopathy and/or heart failure who receive optimal medical therapy should be started on hydrocortisone and fludrocortisone. Fludrocortisone should be used with caution because; excessive fluid retention may lead to, or worsen heart failure symptoms ‘Should do this’ 231,232
Patients with PAI and persistent rhythm abnormalities or myocardial damage may be candidates for pacemakers or high voltage device therapy based on life expectancy and response to optimal medical therapy ‘May do this’ 233

Sex hormones-related differences in the risk of arrhythmias

It is well recognized that men and women differ with respect to the risk of developing arrhythmias. The mechanisms involved in these differences have not been fully elucidated, but may be related to the electrophysiological effects of sex hormones. In experimental studies, 17β-oestradiol has protective effects on ischemia-induced arrhythmias and reduces L-type Ca2+ current (ICaL). Nevertheless, estrogens may partially suppress the delayed rectifier K+ current (IKr), thus enhancing drug-induced APD and QTc prolongation. Progesterone increases slow activating delayed rectifier K+ current (IKs) and modulates ICaL, therefore promoting APD shortening. Testosterone also regulates both IKs and ICaL in a dose-dependent manner and results in shortening of APD. 257,258

Women have higher resting heart rate, shorter PR and QRS intervals, and longer QTc intervals, whereas men more frequently exhibit early repolarization. 254,255,256 Notably, repolarization differences between men and women do not occur in prepubertal children. Repolarization is also affected by the ovarian cycle: since repolarizing currents are increased by progesterone and decreased by oestrogen.
QTc is longer in the follicular phase when compared with the luteal phase.255,258 The longer repolarization renders women more susceptible to drug-induced Torsades de Pointes.260 Therefore, QT prolonging drugs should be used carefully in females, particularly in those with other abnormalities, such as electrolyte imbalance. Accordingly, progesterone may attenuate drug-induced QTc lengthening.261 Also, women have greater arrhythmic risk than men in congenital LQTS, especially after puberty.262 Further emphasizing the role of hormonal modulation in arrhythmia development, in congenital LQTS, the risk of life-threatening events is reduced during pregnancy but increased in the postpartum period.263 On the other hand, Brugada syndrome and AF predominate in men.254–256 It is well known that women have a higher incidence of AV nodal re-entry tachycardia and inappropriate sinus tachycardia.264 Exacerbation of supraventricular tachycardias may occur during pregnancy, likely due to hormonal and autonomic tone changes.265

Stroke risk assessment and prevention in arrhythmias associated with endocrine disorders

As described in previous sections, the presence of various endocrine disorders can be associated with AF, which is the arrhythmia most commonly associated with increased risk of stroke and thromboembolism.

Older small studies113 have suggested an association between thyroid disease and an increased risk of stroke in AF. In the largest analysis from the Swedish AF cohort study,112 a nationwide cohort of 182,678 subjects with AF, thyroid disease (HR 0.95, 95% CI 0.85–1.05) or thyrototoxicosis (HR 0.92, 95% CI 0.70–1.19) were not independent predictors of ischaemic stroke in multivariate analysis. Similarly, either thyroid disease or thyrototoxicosis were not independent predictors of major bleeding or intracranial haemorrhage. Similar observations were noted in the Loire Valley AF project, where history of hyperthyroidism was not an independent risk factor for stroke/systemic embolism, whereas hypothyroidism was associated with a higher risk of bleeding events.114 Thus, AF patients with thyroid disease are associated with stroke or thromboembolism only in association with other established stroke risk factors, the most common of them are included within the CHA2DS2-VASc score.266 Similar for stroke or thromboembolism, risk assessment should be used to identify patients at risk for bleeding, and to address the potentially reversible bleeding risk factors, as advocated by validated practical bleeding risk scores such as the HAS-BLED score.267

Diabetes mellitus is well established as a clinical stroke risk factor in AF and is incorporated into the CHA2DS2-VASc score.266,268 Duration of diabetes may accentuate stroke risk, but not bleeding risk.269 Indeed, duration of diabetes may be a more important predictor of ischaemic stroke than glycaemic control in such patients.270

Whilst diabetic complications such as diabetic retinopathy are associated with higher risks, such evidence of ‘diabetic target organ damage’ does not independently add to stroke or bleeding risk prediction.271

With regard to prevention of stroke, the most important measure is oral anticoagulation (OAC) whether given as a Vitamin K antagonist (VKA, e.g. warfarin) with good quality anticoagulation control (with “time in therapeutic range” or TTR >70%) or a non-VKA oral anticoagulant (NOAC, e.g. dabigatran, rivaroxaban, apixaban, or edoxaban). The NOACs are the preferred option in most patients starting anticoagulation, but given the heterogeneity of AF patients and the availability of different OAC options, we should fit the drug to the patient profile. In general, NOACs appear relatively more effective and safer than VKA in reducing stroke/systemic embolism and major bleeding irrespective of patient comorbidities.272

In summary, AF stroke risk stratification even with concomitant endocrine disorders should use the established CHA2DS2-VASc score266 to initially identify ‘low risk’ patients (CHA2DS2-VASc 0 in males or 1 in females) who do not need any antithrombotic therapy, followed by prevention of stroke (i.e. OAC) in patients with >1 risk factor.

As OAC is being initiated, a clinical bleeding risk score such as HAS-BLED score (see above) should be used to identify patients at risk for bleeding, and importantly, to address the potentially reversible bleeding risk factors (that should be considered in all patients, irrespective of HAS-BLED score value). The next step is to consider choice of OAC, and the SAMe-TT2R2 score273 can be used to aid decision making between a VKA with likelihood of a good TTR (score 0–2) or those less likely to achieve it, thus requiring more regular INR checks, or as a better option, use of a NOAC.274 This simple three-step pathway has been advocated to help streamline decision making for stroke prevention in AF.274
Catheter ablation of arrhythmias associated with endocrine disorders

Catheter ablation for atrial or ventricular arrhythmia is optimally performed in as much as possible stable electrolytic and metabolic conditions, in order to avoid transient arrhythmias. Arrhythmias associated with endocrine disorders would theoretically need no ablation since they are supposed to spontaneously disappear once return to steady state is obtained. They may also alter the analysis of targets to be ablated and interpretation of results for complex procedures. However, ablation sometimes needs to be performed in patients with acute or subacute endocrine disorders. This may apply to patients with severe ventricular tachyarrhythmia and electrical storm, or atrial tachyarrhythmia with haemodynamic compromise not efficiently treated with other methods.

Diabetes

A meta-analysis of 15 studies and 1464 patients indicated that catheter ablation of AF in patients with diabetes had similar safety and efficacy than that in the general population, especially when performed to patients with severe ventricular tachyarrhythmia and electrical storm, or atrial tachyarrhythmia with haemodynamic compromise not efficiently treated with other methods.

Thyroid disorders

FT4 levels may influence the success rate of AF ablation procedures, even within the normal range. It has been found that right atrial non-PVs triggers were more prevalent in AF patients treated with thyroid hormone replacement. After elimination of non-PV triggers, there was still a worse arrhythmia-free survival in these patients. Patients with hyperthyroidism have a higher number of PV ectopic beats and higher prevalence of non-PV ectopic foci compared with euthyroid patients, which may result in a higher AF recurrence rate after ablation procedure. Catheter ablation for paroxysmal AF patients with amiodarone-induced hyperthyroidism is usually safe and effective albeit with higher rate of early AF recurrences up to 3 months after PV isolation relative to controls, but not beyond 12 months. Pulmonary vein isolation alone may have a lower efficacy for preventing recurrence in paroxysmal AF in these patients with amiodarone-induced hyperthyroidism, which may need repeat ablations.

Device-based therapy of arrhythmias in patients with endocrine disorders

Diabetes and long-term treatment with chronic corticosteroids (frequently prescribed in endocrine disorders) are important factors associated with an increased risk of infections of cardiac electrical implanted devices (CIEDs), as shown in Table 8. Pacemaker- and ICD-related infections represent one of the most difficult complications that may occur in a patient implanted with a CIED. There is increasing concern on the important clinical and economic consequences of the rise in the incidence of CIED-related infections that have occurred in the last 10 years. The incidence of pacemaker- and ICD-related infections has been reported to range between 0.1% and 19.9%, for pacemakers, and between 0.8% and 9.5% for ICDs, including biventricular devices, in observational studies with different follow-up durations. Cardiac electrical implanted devices infections usually appear as infections limited to the device pocket, often with fistulas and skin erosion, but lead endocarditis may be detected in around one out of 10 cases, with an incidence of 0.06–0.6%. The outcome of CIED infections is characterized by serious events including a high risk of death, so preventive measures are mandatory, on the basis of appropriate identification of risk factors (Table 10).

In patients with an ICD or a device for cardiac resynchronization therapy (CRT) implanted, diabetes influences outcome, similarly to other comorbidities included in the Charlson comorbidity score. The comorbidities that are represented in the Charlson comorbidity
Table 10 Risk of CIED infection according to a series of risk factors, as reported in literature

<table>
<thead>
<tr>
<th>Patient factors</th>
<th>Odds ratio for the risk of CIED infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gender</td>
<td>1.5</td>
</tr>
<tr>
<td>Younger age</td>
<td>1.4–4.5</td>
</tr>
<tr>
<td>Diabetes</td>
<td>2.3–3.5</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>4.6–6.3</td>
</tr>
<tr>
<td>Haemodialysis</td>
<td>8.6</td>
</tr>
<tr>
<td>Treatment with anticoagulants</td>
<td>2.6–3.4</td>
</tr>
<tr>
<td>Chronic corticosteroid use</td>
<td>9.1</td>
</tr>
<tr>
<td>History of malignancy</td>
<td>4.0</td>
</tr>
<tr>
<td>Underlying heart disease</td>
<td>3.1</td>
</tr>
<tr>
<td>High Charlson co-morbidity index</td>
<td>2.7–3.0</td>
</tr>
<tr>
<td>Fever, systemic infection</td>
<td>5.8</td>
</tr>
<tr>
<td>Device or procedure-related factors</td>
<td></td>
</tr>
<tr>
<td>Prior CIED infection</td>
<td>11.3</td>
</tr>
<tr>
<td>>3 implanted leads</td>
<td>4.0–5.4</td>
</tr>
<tr>
<td>Device replacement, device upgrades or implant revision</td>
<td>1.7–3.1</td>
</tr>
<tr>
<td>Early reinterventions</td>
<td>2.7–15</td>
</tr>
<tr>
<td>Temporary pacing prior to implantation</td>
<td>2.5</td>
</tr>
<tr>
<td>Post-operative haematoma at pocket site</td>
<td>4.0–6.7</td>
</tr>
<tr>
<td>Physician experience</td>
<td>2.5</td>
</tr>
</tbody>
</table>

CIED, cardiac electrical implanted device.

score are independent predictors of death, all-cause, and cardiovascular hospitalizations, as well as of days spent alive and out of hospital.286 In a report from the United States on more than 18 000 patients with a cardiac resynchronization therapy-defibrillator (CRT-D) device implanted, patients with diabetes had a higher mortality than those without diabetes, both at 1 and 3 years,287 in agreement with a meta-analysis based on five studies on cardiac resynchronization in heart failure.288,289 However, these findings have to be analysed in combination with the evidence derived from randomized studies that CRT is equally effective in reducing mortality vs. control in diabetic as compared to non-diabetic patients.288,290

The effectiveness of ICDs for primary prevention of SCD in patients with diabetes has raised great interest since diabetes, as well as other comorbidities, may be also associated with a high risk of non-arrhythmic cardiac and non-cardiac death. This complex topic has been studied through subanalysis of randomized trials, systematic reviews, and meta-analysis.291 The subanalysis of diabetic patients in randomized clinical trials provides reassurance, since the beneficial effect of ICD on survival is confirmed both in patients with and without diabetes.291–293 The frequent association between diabetes and chronic kidney disease (CKD) is of great relevance, since CKD per se may condition the outcome and the benefits after implant of a ICD or a CRT device.294

In patients implanted with a defibrillator the occurrence of AF due to hyperthyroidism may induce inappropriate shocks and requires proper management.258 Hyperthyroidism, either due to primary thyroid disease or secondary to amiodarone treatment, should be excluded in any case of new-onset of atrial tachyarrhythmias.295,296

Hypothyroidism has been associated with poor outcomes in patients with heart failure and therefore it is of interest to assess the outcome of patients with previous diagnosis of hypothyroidism after CRT device implantation. In a case series of heart failure patients implanted with CRT a history of hypothyroidism was present in 16.4% and was an independent predictor of poor outcome (cardiac death heart failure hospitalization or need for heart transplant).297,298

Current research gaps, ongoing trials and future directions

Most of the information present in the literature is based on registries and the communication of some exceptional cases. Mostly, there are no data on the specific effect of hormones on heart rate disturbances, and their effects are estimated based on structural remodelling and associated comorbidities (i.e. changes in blood pressure, obesity, sleep disorders, or increased catecholamine levels). Importantly, there is scarce evidence of the real incidence of arrhythmias in endocrine diseases. Indeed, the lack of clinical trials with specific attention to the effect on arrhythmias is general. Specific randomized trials are needed beyond drug safety, where only the effect on heart rhythm disturbances is very marginal.

Different trials are searching for the biological effect of antidiabetic drugs on heart rhythm. For example, it has led to study the effects of intravenous exenatide on cardiac repolarisation,299 exploring changes to QTc interval changes. In the same line, Addhope 2 trial300 studies the heart rate variability modifications with liraglutide in patients with ischaemic heart disease and newly diagnosed DM type 2.

An interesting field is the diagnosis of AF in patients treated for hyperthyroidism. In this setting, there is a thumb-ECG ambulant screening for AF in this type of patients,301 though in clinical setting other monitoring methods can be used. Whereas TABLAS study explores the influence of subclinical hyperthyroidism on the results of AF ablation.302

Regarding PCC, the PRESCRIPT trial compares phenoxybenzamine vs. doxazosin, and assesses the differences in high blood pressure and tachycardia episodes.303 There is also an ongoing study in acromegaly patients; it is exploring the effects of repeated subcutaneous injection with BIM23B065—a somatostatin 2 receptor agonist-in acromegalic patients304 on blood pressure, heart rate, and QT interval.

Cardiac arrhythmias in endocrine disorders are frequent and modify the natural history of the disease. These facts invite cardiologists to participate in future research and trials to explore pathophysiologic pathways, diagnosis and therapeutic approach in endocrine disorders.

Supplementary material

Supplementary material is available at Europace online.

Acknowledgements

The authors thank EHRA Scientific Documents Committee: Gregory Y.H. Lip, Laurent Fauchier, David Arnar, Carina Blomstrom-Lundqvist, Zbigniew Kalarus, Gulmina Kudaiberdieva, Georges H.
References

Mairesse, Tatjana Potpara, Irina Savelieva, Jesper Hastrup Svendsen, Vassil B. Trakov.

Conflict of interest: none declared.

90. Chauhan V. Hypothyroidism was 300% more frequent than hyperthyroidism as a risk factor for atrial fibrillation: a population-based study. BMJ 2002; 325: 9–14.

92. Chauhan V. Hypothyroidism was 300% more frequent than hyperthyroidism as a risk factor for atrial fibrillation: a population-based study. BMJ 2002; 325: 9–14.

299. Study of the effects of intravenous exenatide on cardiac repolarization. ClinicalTrials.gov Identifier: NCT 02650479.

